cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A136008 a(n) = n^6 - n^2.

Original entry on oeis.org

0, 0, 60, 720, 4080, 15600, 46620, 117600, 262080, 531360, 999900, 1771440, 2985840, 4826640, 7529340, 11390400, 16776960, 24137280, 34011900, 47045520, 63999600, 85765680, 113379420, 148035360, 191102400, 244140000, 308915100
Offset: 0

Views

Author

Rolf Pleisch, Mar 16 2008

Keywords

Crossrefs

Programs

Formula

G.f.: 60*x^2*(1 +5*x +5*x^2 +x^3)/(1-x)^7. - Alexander R. Povolotsky, Apr 01 2008
a(n) = A001014(n) - A000290(n). - Omar E. Pol, Dec 26 2008
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=2} 1/a(n) = 7/8 - Pi^2/6 + Pi*coth(Pi)/4.
Sum_{n>=2} (-1)^n/a(n) = -7/8 + Pi^2/12 + Pi*csch(Pi)/4 = -7/8 + A072691 + (1/4) * A090986. (End)
a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7). - Wesley Ivan Hurt, May 04 2021
From G. C. Greubel, Feb 07 2022: (Start)
a(n) = 6*binomial(n^2 + 1, 3).
E.g.f.: x^2*(30 +90*x +65*x^2 +15*x^3 +x^4)*exp(x). (End)

Extensions

Extended by Ray Chandler, Dec 13 2008

A144668 Decimal expansion of product_{n=2..infinity} (n^9-1)/(n^9+1).

Original entry on oeis.org

9, 9, 5, 9, 9, 1, 2, 6, 5, 8, 9, 3, 4, 0, 4, 6, 5, 5, 1, 1, 9, 1, 9, 4, 1, 3, 1, 7, 4, 5, 8, 2, 2, 9, 3, 0, 8, 5, 6, 6, 2, 2, 6, 6, 6, 2, 5, 0, 3, 5, 5, 0, 4, 9, 7, 5, 3, 4, 3, 9, 9, 7, 1, 9, 6, 3, 6, 6, 5, 1, 6, 1, 7, 2, 7, 3, 5, 1, 1, 6, 2, 3, 2, 8, 3, 3, 6, 4, 3, 9, 7, 7, 9, 9, 2, 7, 6, 1, 3, 0, 0, 9, 7, 6, 6
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.99599126589340465511919...
		

Crossrefs

Cf. A090986.

Programs

  • Mathematica
    p = 2/3*Product[Gamma[2 + (-1)^(k + k/9)], {k, {1, 2, 4, 5, 7, 8}}]/ Product[Gamma[2 - (-1)^(k + k/9)], {k, {1, 2, 4, 5, 7, 8}}]; RealDigits[Re[p], 10, 105][[1]] (* Jean-François Alcover, Feb 11 2013, updated Nov 18 2015 *)

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A144669 Decimal expansion of product_{n=2..infinity} (n^10-1)/(n^10+1).

Original entry on oeis.org

9, 9, 8, 0, 1, 2, 8, 2, 6, 1, 7, 2, 9, 8, 2, 7, 8, 4, 1, 9, 0, 0, 3, 9, 8, 1, 4, 5, 0, 8, 9, 6, 8, 5, 6, 5, 5, 3, 1, 4, 5, 2, 5, 3, 8, 6, 6, 4, 3, 8, 9, 8, 4, 3, 3, 4, 7, 6, 2, 9, 4, 0, 3, 4, 9, 5, 1, 1, 7, 1, 7, 2, 8, 6, 1, 2, 5, 7, 0, 6, 6, 4, 6, 6, 2, 2, 7, 4, 4, 2, 6, 4, 4, 6, 0, 9, 0, 9, 8, 6, 6, 1, 1, 2, 2
Offset: 0

Views

Author

R. J. Mathar, Feb 01 2009

Keywords

Examples

			0.99801282617298278419003981450896856553...
		

Crossrefs

Cf. A090986.

Programs

  • Mathematica
    f[k_] := Sin[(-1)^(k/10)*Pi]; RealDigits[Pi/(5*Sinh[Pi])*Product[f[k], {k, {2, 4, 6, 8}}]/ Product[f[k], {k, {1, 3, 7, 9}}] // Re, 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A330864 Decimal expansion of sinh(Pi/2)/2.

Original entry on oeis.org

1, 1, 5, 0, 6, 4, 9, 4, 5, 1, 1, 5, 3, 6, 4, 7, 4, 3, 6, 7, 3, 1, 5, 2, 0, 0, 1, 1, 7, 1, 7, 2, 1, 3, 5, 8, 9, 0, 8, 9, 0, 7, 3, 2, 5, 8, 2, 5, 8, 1, 9, 1, 3, 3, 2, 9, 8, 6, 4, 1, 9, 9, 0, 1, 5, 4, 6, 7, 8, 3, 0, 0, 6, 9, 0, 1, 5, 2, 4, 9, 9, 9, 2, 4, 0, 0, 2, 6, 1, 2, 2, 1, 7, 9, 6, 1, 4, 3, 2, 9, 8, 2, 9, 1, 9, 0, 1, 1, 2, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Comments

This constant is transcendental.

Examples

			(1 + 1/2^2) * (1 - 1/3^2) * (1 + 1/4^2) * (1 - 1/5^2) * (1 + 1/6^2) * ... = (e^(Pi/2) - e^(-Pi/2))/4 = 1.15064945115364743673152001...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[Pi/2]/2, 10, 110] [[1]]
  • PARI
    sinh(Pi/2)/2 \\ Michel Marcus, Apr 28 2020

Formula

Equals Sum_{k>=1} Pi^(2*k-1)/(4^k*(2*k-1)!).
Equals Product_{k>=2} (1 + (-1)^k/k^2).
Equals (i^(-i) - i^i)/4, where i is the imaginary unit.

A352527 Decimal expansion of Sum_(k>=1) (-1)^k * zeta(2k)/(2k) (negated).

Original entry on oeis.org

6, 5, 0, 9, 2, 3, 1, 9, 9, 3, 0, 1, 8, 5, 6, 3, 3, 8, 8, 8, 5, 2, 1, 6, 8, 3, 1, 5, 0, 3, 9, 4, 7, 6, 6, 5, 0, 6, 5, 5, 0, 8, 7, 5, 7, 1, 3, 9, 7, 2, 2, 5, 9, 1, 9, 9, 8, 3, 8, 2, 4, 8, 2, 1, 0, 6, 4, 0, 7, 4, 3, 1, 1, 3, 0, 4, 9, 6, 7, 0, 7, 0, 6, 4, 5, 5, 8, 5, 9, 5, 0, 9, 4, 0, 9, 4
Offset: 1

Views

Author

Bernard Schott, Mar 19 2022

Keywords

Examples

			-0.65092319930185633888521683150394766...
		

Crossrefs

Programs

  • Maple
    evalf(log(Pi/sinh(Pi)) / 2, 100);
  • Mathematica
    RealDigits[Log[Pi/Sinh[Pi]]/2, 10, 100][[1]] (* Amiram Eldar, Mar 19 2022 *)

Formula

Equals log(Pi/sinh(Pi)) / 2.
Equals Integral_{x=0..Pi/2} ({tan(x)}/tan(x) - 1) dx, where {x} = x - floor(x) is the fractional part of x (Vălean, 2016). - Amiram Eldar, Feb 08 2024

A366545 Decimal expansion of the value x for which the function Re(Gamma(-x + i*sqrt(1-x^2))) is minimized for -1 < x < 1.

Original entry on oeis.org

9, 5, 6, 5, 1, 3, 0, 9, 0, 3, 4, 6, 6, 5, 4, 5, 6, 5, 6, 0, 3, 6, 3, 6, 6, 0, 1, 5, 9, 2, 5, 6, 5, 4, 4, 4, 9, 3, 0, 6, 8, 3, 2, 2, 6, 1, 4, 9, 5, 4, 1, 1, 1, 2, 5, 7, 6, 3, 2, 8, 7, 6, 6, 0, 5, 4, 8, 0, 3, 1, 9, 7, 3, 5, 7, 6, 8, 6, 8, 6, 5, 1, 2, 3, 6, 0, 9, 8, 4, 8, 5, 7, 1, 4, 0, 0, 7, 5, 2, 8, 1, 9, 9, 9, 1, 7
Offset: 0

Views

Author

Artur Jasinski, Oct 12 2023

Keywords

Comments

For Re(Gamma(-A366545 + i*sqrt(1-A366545^2))) = -0.930840199... see A366545.

Examples

			0.9565130903466545656...
		

Crossrefs

Programs

  • Mathematica
    xmin = Re[x /. FindRoot[1/(2 Sqrt[1 - x^2]) I (Gamma[1 + x - I Sqrt[1 - x^2]] PolyGamma[0, x - I Sqrt[1 - x^2]] - Gamma[1 + x + I Sqrt[1 - x^2]] PolyGamma[0,
             x + I Sqrt[1 - x^2]]), {x, -0.98}, WorkingPrecision -> 110]];
     RealDigits[xmin, 10, 106][[1]]

A367976 Decimal expansion of Sum_{k >= 0} (-1)^k/(1+k^2).

Original entry on oeis.org

6, 3, 6, 0, 1, 4, 5, 2, 7, 4, 9, 1, 0, 6, 6, 5, 8, 1, 4, 7, 5, 1, 1, 8, 2, 9, 1, 8, 3, 6, 0, 1, 8, 7, 7, 7, 9, 2, 0, 3, 5, 9, 1, 8, 1, 7, 3, 0, 1, 5, 7, 9, 7, 4, 7, 5, 3, 4, 4, 8, 3, 9, 1, 9, 2, 8, 1, 2, 3, 0, 9, 5, 6, 8, 4, 7, 4, 3, 9, 4, 4, 0, 9, 5, 5, 7, 6, 5, 5, 8, 6, 0, 5, 3, 4, 6, 8, 8, 2, 2, 4, 3, 0, 5
Offset: 0

Views

Author

R. J. Mathar, Dec 07 2023

Keywords

Examples

			0.636014527491066581475118291836...
		

Crossrefs

Cf. A113319.

Programs

  • Maple
    1/4*(2-Pi*tanh(Pi/2)+Pi*coth(Pi/2)) ; evalf(%) ;
  • Mathematica
    RealDigits[(1 + Pi*Csch[Pi])/2, 10, 120][[1]] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    sumalt(k=0, (-1)^k/(1+k^2)) \\ Michel Marcus, Dec 07 2023

Formula

Equals (2-Pi*tanh(Pi/2)+Pi*coth(Pi/2))/4 = (1 - A228048 + Pi/2*A367961)/2.
From Amiram Eldar, Dec 11 2023: (Start)
Equals (1 + Pi/sinh(Pi))/2.
Equals Integral_{x>=0} (cos(x)/cosh(x))^2 dx. (End)
Equals (1+A090986)/2. - R. J. Mathar, Dec 13 2023

A345929 Decimal expansion of Product_{k>=1} (1 + 1/k + 1/k^2)^2/(1 + 2/k + 3/k^2).

Original entry on oeis.org

1, 8, 4, 8, 9, 3, 6, 1, 8, 2, 8, 5, 8, 2, 4, 4, 4, 8, 5, 2, 2, 4, 9, 2, 6, 8, 5, 5, 5, 2, 0, 8, 3, 9, 0, 5, 9, 0, 9, 2, 5, 9, 2, 5, 3, 1, 8, 9, 6, 3, 9, 7, 1, 9, 1, 8, 2, 8, 1, 4, 0, 1, 7, 3, 7, 5, 0, 2, 6, 6, 5, 6, 8, 0, 7, 9, 0, 6, 7, 7, 9, 4, 4, 6, 9, 7, 8
Offset: 1

Views

Author

Amiram Eldar, Jun 29 2021

Keywords

Examples

			1.84893618285824448522492685552083905909259253189639...
		

Crossrefs

Cf. A090986.

Programs

  • Mathematica
    RealDigits[3*Sqrt[2]*Cosh[Pi*Sqrt[3]/2]^2/(Pi*Sinh[Pi*Sqrt[2]]), 10, 100][[1]]

Formula

Equals 3*sqrt(2)*cosh(Pi*sqrt(3)/2)^2/(Pi*sinh(Pi*sqrt(2))).
Previous Showing 21-28 of 28 results.