cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A164108 Decimal expansion of Pi^4/24.

Original entry on oeis.org

4, 0, 5, 8, 7, 1, 2, 1, 2, 6, 4, 1, 6, 7, 6, 8, 2, 1, 8, 1, 8, 5, 0, 1, 3, 8, 6, 2, 0, 2, 9, 3, 7, 9, 6, 3, 5, 4, 0, 5, 3, 1, 6, 0, 6, 9, 6, 9, 5, 2, 2, 5, 9, 0, 3, 8, 1, 1, 1, 6, 0, 8, 0, 7, 9, 1, 5, 4, 5, 2, 3, 1, 0, 7, 0, 1, 1, 3, 3, 1, 7, 4, 5, 8, 8, 4, 1, 1, 1, 3, 4, 7, 8, 1, 3, 7, 4, 6, 8, 9, 6, 2, 3, 7, 1
Offset: 1

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Volume of the 8-dimensional unit sphere.

Examples

			4.0587121264167682181850138620293796354053160696952259038...
		

Crossrefs

Programs

Formula

Equals A164109/8 = A092425/24 = A072691*A102753.
Pi^4/240 = -Integral_{x=0..1} log(1-x)*log(1+x)^2/x dx (Vălean, 2017). - Amiram Eldar, Mar 26 2022

A276023 Decimal expansion of 32*Pi^4/945.

Original entry on oeis.org

3, 2, 9, 8, 5, 0, 8, 9, 0, 2, 7, 3, 8, 7, 0, 6, 8, 6, 9, 3, 8, 2, 1, 0, 6, 5, 0, 3, 7, 4, 4, 5, 1, 1, 7, 0, 3, 6, 9, 4, 4, 7, 9, 0, 9, 1, 5, 6, 1, 8, 3, 4, 3, 8, 5, 3, 1, 9, 5, 4, 6, 5, 6, 1, 3, 5, 3, 5, 1, 0, 4, 4, 9, 3, 3, 1, 7, 1, 4, 5, 7, 9, 9, 8, 2, 9, 6, 2, 7, 0, 0, 0, 1, 2, 7, 9, 9, 7, 4, 7, 7, 5, 7, 6, 8, 6, 2, 9, 0, 0, 0, 5, 4, 6, 3, 5, 9, 5, 9, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 16 2016

Keywords

Comments

Volume of the 9-dimensional unit sphere.
More generally, the ordinary generation function for the volume of the n-dimensional unit sphere is exp(Pi*x^2)*(erf(sqrt(Pi)*x) + 1) = 1 + 2*x + Pi*x^2 + (4*Pi/3)*x^3 + (Pi^2/2)*x^4 + ...

Examples

			3.2985089027387068693821065037445117...
		

Crossrefs

Cf. similar sequences of the volume of the n-dimensional unit sphere: A000796 (n = 2), 10*A019699 (n = 3), A102753 (n = 4), A164103 (n = 5), A164105 (n = 6), A164106 (n = 7), A164108 (n = 8).

Programs

  • Mathematica
    RealDigits[(32 Pi^4)/945, 10, 120][[1]]
  • PARI
    (32*Pi^4)/945 \\ G. C. Greubel, Apr 09 2017

Formula

Equals 32*A092425*A021949.

A100322 a(n) is the smallest positive integer k such that the digits of the fractional part of Pi^k begin with n.

Original entry on oeis.org

1, 7, 6, 4, 8, 23, 25, 2, 15, 91, 51, 307, 49, 1, 102, 315, 112, 12, 76, 26, 115, 208, 77, 276, 161, 40, 13, 41, 7, 99, 174, 169, 86, 453, 110, 204, 53, 6, 67, 4, 228, 123, 37, 134, 158, 192, 33, 45, 61, 200, 31, 324, 8, 56, 34, 105, 148, 17, 19, 92, 23, 38, 27, 39, 32, 82
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 16 2004

Keywords

Examples

			Pi^1 = 3.14159..., whose digits after the decimal point begin with 1, so a(1)=1.
Pi^2 = 9.869..., whose digits after the decimal point begin with 8, so a(8)=2.
a(14)=1 because Pi^1 = 3.14....
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (floor(frac(Pi^k)*10^(1+logint(n, 10))) != n, k++); k; \\ Michel Marcus, Jun 18 2022

A193717 Decimal expansion of Pi^4*log(2)/64 - 9*Pi^2*zeta(3)/64 + 93*zeta(5)/128.

Original entry on oeis.org

1, 4, 0, 0, 2, 4, 1, 0, 1, 7, 0, 6, 8, 5, 2, 3, 1, 7, 1, 0, 0, 2, 7, 0, 5, 7, 8, 8, 7, 5, 5, 3, 5, 0, 7, 5, 3, 2, 2, 4, 2, 8, 2, 1, 2, 7, 8, 5, 7, 7, 0, 5, 0, 8, 9, 8, 8, 1, 8, 5, 9, 6, 3, 1, 4, 1, 1, 6, 2, 7, 7, 1, 4, 6, 3, 7, 0, 5, 9, 7, 0, 2, 3, 0, 4, 9, 0, 7, 6, 1, 1, 0, 2, 6, 6, 3, 0, 9, 0, 5
Offset: 0

Views

Author

Seiichi Kirikami, Aug 03 2011

Keywords

Comments

The absolute value of the integral {x=0..Pi/2} x^3*log(sin(x )) dx or (d^3/da^3 (integral {x=0..Pi/2} sin(ax )*log(sin(x )) dx)) at a=0. The absolute value of (sum {n=1..infinity} (limit { a -> 0} (d^3/da^3 ((1-cos((a+2n)*Pi/2))/n/(a+2n)))))-(Pi/2)^4*log(2)/4. [Seiichi Kirikami and Peter J. C. Moses]

Examples

			-0.14002410170685231710...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, series and Products, 4th edition, 1.441.2, log(sin(x))=-(sum {1..infinity} cos(2nx)/n)-log(2).

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(2 Pi^4 Log[2] - 18 Pi^2 Zeta[3] + 93 Zeta[5]) / 128, 105]][[1]]
  • PARI
    Pi^4*log(2)/64 - 9*Pi^2*zeta(3)/64 + 93*zeta(5)/128 \\ Michel Marcus, Oct 25 2017

Formula

Equals A092425*A002162/64-9*A002388*A002117/64+93*A013663/128.

A300731 Decimal expansion of sqrt(Pi^4/96 - 1).

Original entry on oeis.org

1, 2, 1, 1, 5, 2, 9, 2, 6, 5, 1, 9, 3, 0, 4, 7, 4, 3, 3, 1, 4, 9, 7, 3, 8, 7, 4, 7, 4, 5, 3, 5, 2, 8, 5, 0, 9, 8, 8, 5, 9, 7, 5, 4, 4, 0, 5, 6, 8, 5, 3, 2, 4, 6, 6, 0, 6, 0, 3, 7, 5, 1, 2, 0, 8, 6, 8, 2, 8, 3, 0, 8, 1, 1, 3, 7, 6, 5, 3, 2, 6, 4, 3, 4, 7, 3, 8, 3, 8, 0, 6, 1, 5, 8, 5, 5, 0, 7, 9, 1, 5, 8, 2
Offset: 0

Views

Author

Keywords

Comments

Also the total harmonic distortion (THD) of a triangle wave, see formula (14) in the Blagouchine & Moreau link.

Examples

			0.1211529265193047433149738747453528509885975440568532...
		

Crossrefs

Programs

  • MATLAB
    format long; sqrt(pi^4/96-1)
  • Maple
    evalf(sqrt((1/96)*Pi^4-1), 120)
  • Mathematica
    RealDigits[Sqrt[Pi^4/96 - 1], 10, 120][[1]]
  • PARI
    default(realprecision, 120); sqrt(Pi^4/96-1)
    

A058286 Continued fraction for Pi^4.

Original entry on oeis.org

97, 2, 2, 3, 1, 16539, 1, 6, 7, 6, 8, 6, 3, 9, 1, 1, 1, 18, 1, 4, 1, 13, 1, 2, 1, 127, 1, 1, 1, 4, 1, 6, 1, 1, 1, 10, 10, 1, 1, 2, 1, 2, 1, 5, 1, 1, 10, 1, 3, 2, 1, 1, 4, 9, 1, 7, 70, 1, 13, 1, 2, 6, 1, 2, 24, 5, 2, 6, 1, 1, 1, 8, 1, 1, 11, 2, 1, 1, 4, 3, 1, 3, 2, 2, 1, 7, 1, 4, 1, 22, 2, 1, 2, 3, 1
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

"Truncating just before the unexpectedly large partial quotient 16,539 gives a famous approximation of Ramanujan for Pi^4 of 97 9/22." (Wells)

Examples

			97.4090910340024372364403326... = 97 + 1/(2 + 1/(2 + 1/(3 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 22 2009
		

References

  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 116.

Crossrefs

Cf. A092425 Decimal expansion. - Harry J. Smith, Jun 22 2009

Programs

  • Mathematica
    ContinuedFraction[ Pi^4, 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^4); for (n=0, 20000, write("b058286.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 22 2009

A212004 Decimal expansion of (2*Pi)^4.

Original entry on oeis.org

1, 5, 5, 8, 5, 4, 5, 4, 5, 6, 5, 4, 4, 0, 3, 8, 9, 9, 5, 7, 8, 3, 0, 4, 5, 3, 2, 3, 0, 1, 9, 2, 8, 1, 7, 7, 9, 9, 9, 5, 6, 4, 1, 3, 7, 0, 7, 6, 2, 9, 6, 6, 7, 4, 7, 0, 6, 3, 4, 8, 5, 7, 5, 0, 2, 3, 9, 5, 3, 3, 6, 8, 7, 3, 0, 9, 2, 3, 5, 1, 3, 9, 0, 4, 1, 9
Offset: 4

Views

Author

Omar E. Pol, Aug 11 2012

Keywords

Examples

			1558.545456544038995783...
		

Crossrefs

Programs

Formula

Equals Product_{k=1..15, gcd(k,15)==1} Gamma(k/15). - Amiram Eldar, Jun 12 2021

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...

A306604 Number of perfect squares in the half-open interval [Pi^(n-1), Pi^n).

Original entry on oeis.org

0, 1, 2, 2, 4, 8, 14, 23, 43, 75, 134, 236, 419, 743, 1316, 2333, 4135, 7329, 12992, 23026, 40813, 72338, 128218, 227259, 402806, 713955, 1265453, 2242956, 3975538, 7046456, 12489518, 22137096, 39236979, 69545736, 123266607, 218484372, 387253468, 686388899
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2019

Keywords

Comments

Inspired by A306486.

Examples

			a(4) = 4: in the interval [Pi^3, Pi^4) = [31.006..., 97.409...) = are four perfect squares: 36, 49, 64, 81.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f(n)-f(n-1))(i-> ceil(Pi^(i/2))):
    seq(a(n), n=0..42);

Formula

a(n) = ceiling(Pi^(n/2)) - ceiling(Pi^((n-1)/2)).
a(n) = A102477(n) - A102477(n-1).
Sum_{i=0..n} a(i) = A102475(n) for n > 0.
Lim_{n->oo} a(n+1)/a(n) = sqrt(Pi) = 1.7724538509... = A002161.

A377592 Decimal expansion of 9*zeta(3)/Pi^2 - 93*zeta(5)/(2*Pi^4) - log(2) + 1/4.

Original entry on oeis.org

1, 5, 8, 0, 0, 0, 9, 6, 3, 6, 2, 5, 5, 5, 7, 7, 3, 3, 2, 6, 8, 6, 2, 9, 3, 8, 5, 9, 7, 8, 4, 5, 8, 5, 4, 9, 0, 9, 1, 7, 8, 0, 2, 8, 4, 7, 9, 6, 2, 7, 6, 1, 1, 3, 0, 8, 8, 6, 1, 4, 1, 6, 3, 1, 6, 2, 1, 8, 5, 9, 2, 6, 5, 7, 1, 5, 5, 6, 8, 4, 3, 7, 3, 7, 0, 1, 6, 0, 8, 6, 6, 1, 9, 2, 7, 0, 2, 8, 0, 9
Offset: 0

Views

Author

Stefano Spezia, Nov 02 2024

Keywords

Examples

			0.158000963625557733268629385978458549091780284796...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Programs

  • Mathematica
    RealDigits[9Zeta[3]/Pi^2-93Zeta[5]/(2Pi^4)-Log[2]+1/4,10,100][[1]]

Formula

Equals Sum_{k>=1} zeta(2*k)/((k + 2)*2^(2*k)) (see Finch).
Previous Showing 11-20 of 28 results. Next