cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A275496 a(n) = n^2*(2*n^2 + (-1)^n).

Original entry on oeis.org

0, 1, 36, 153, 528, 1225, 2628, 4753, 8256, 13041, 20100, 29161, 41616, 56953, 77028, 101025, 131328, 166753, 210276, 260281, 320400, 388521, 468996, 559153, 664128, 780625, 914628, 1062153, 1230096, 1413721, 1620900, 1846081, 2098176, 2370753, 2673828
Offset: 0

Views

Author

Daniel Poveda Parrilla, Jul 30 2016

Keywords

Comments

All terms of this sequence are triangular numbers. Graphically, for each term of the sequence, one corner of the square of squares (4th power) will be part of the corresponding triangle's hypotenuse if the term is an odd number. Otherwise, it will not be part of it.
a(A000129(n)) is a square triangular number.
a(2^((A000043(n) - 1)/2)) - 2^A000043(n) is a perfect number.

Examples

			a(5) = 5^4 + Sum_{k=0..(5^2 - (5 mod 2))} 2k = 625 + Sum_{k=0..(25 - 1)} 2k = 625 + 600 = 1225.
a(12) = 12^4 + Sum_{k=0..(12^2 - (12 mod 2))} 2k = 20736 + Sum_{k=0..(144 - 0)} 2k = 20736 + 20880 = 41616.
		

Crossrefs

Programs

  • Mathematica
    Table[n^2 ((-1)^n + 2 n^2), {n, 0, 34}] (* or *)
    CoefficientList[Series[x (1 + 34 x + 79 x^2 + 156 x^3 + 79 x^4 + 34 x^5 +
    x^6)/((1 - x)^5 (1 + x)^3), {x, 0, 34}], x] (* Michael De Vlieger, Aug 01 2016 *)
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,1,36,153,528,1225,2628,4753},40] (* Harvey P. Dale, Sep 10 2016 *)
  • PARI
    a(n)=n=n^2; if(n%2,2*n-1,2*n+1)*n \\ Charles R Greathouse IV, Jul 30 2016
    
  • PARI
    concat(0, Vec(x*(1+34*x+79*x^2+156*x^3+79*x^4+34*x^5+x^6)/((1-x)^5*(1+x)^3) + O(x^100))) \\ Colin Barker, Aug 01 2016

Formula

a(n) = n^4 + Sum_{k=0..(n^2 - (n mod 2))} 2k.
a(n) = A275543(n)*(n^2).
From Colin Barker, Aug 01 2016 and Aug 04 2016: (Start)
a(n) = n^2*(2*n^2 + (-1)^n).
a(n) = 2*n^4 + n^2 for n even.
a(n) = 2*n^4 - n^2 for n odd.
G.f.: x*(1 +34*x +79*x^2 +156*x^3 +79*x^4 +34*x^5 +x^6) / ((1-x)^5*(1+x)^3).
(End)
a(n) = n^2*A000217(2n-1) + 2n*A000217(n-(n mod 2)) for n > 0.
E.g.f.: x*(2*(1 + 7*x + 6*x^2 + x^3)*exp(x) - exp(-x)). - G. C. Greubel, Aug 05 2016
a(n) = A000217(A077221(n)).
a(n) = (A001844(A077221(n)) - 1)/4.
Sum_{n>=1} 1/a(n) = 1 - Pi^2/12 + (tan(c) - coth(c))*c, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022

Extensions

New name from Colin Barker, Aug 04 2016

A326919 Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k.

Original entry on oeis.org

1, 1, 8, 7, 4, 1, 0, 4, 1, 1, 7, 2, 3, 7, 2, 5, 9, 4, 8, 7, 8, 4, 6, 2, 5, 2, 9, 7, 9, 4, 9, 3, 6, 3, 0, 2, 9, 9, 9, 2, 3, 3, 4, 6, 8, 6, 1, 6, 5, 0, 3, 5, 7, 5, 7, 5, 1, 5, 2, 0, 2, 3, 8, 5, 8, 5, 8, 4, 5, 8, 8, 9, 0, 9, 3, 4, 0, 7, 1, 5, 7, 5, 4, 8, 2, 0, 8, 9, 9, 9, 9
Offset: 1

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A175629 and s = 1.

Examples

			1 + 1/2 - 1/3 + 1/4 - 1/5 - 1/6 + 1/8 + 1/9 - 1/10 + 1/11 - 1/12 - 1/13 + ... = Pi/sqrt(7) = 1.1874104117...
		

Crossrefs

Cf. A175629.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k, where d is a fundamental discriminant: A093954 (d=-8), this sequence (d=-7), A003881 (d=-4), A073010 (d=-3), A086466 (d=5), A196525 (d=8), A196530 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^s: this sequence (s=1), A103133 (s=2), A327135 (s=3).

Programs

  • Mathematica
    RealDigits[Pi/Sqrt[7], 10, 102] // First
  • PARI
    default(realprecision, 100); Pi/sqrt(7)

Formula

Equals Pi/sqrt(7). This is related to the class number formula: if d<0 is the fundamental discriminant of an imaginary quadratic number field, Chi(k) = Kronecker(d,k), then L(1,Chi) = Sum_{k>=1} Kronecker(d,k)/k = 2*Pi*h(d)/(sqrt(|d|)*w(d)), where h(d) is the class number of K = Q[sqrt(d)], w(d) is the number of elements in K whose norms are 1 (w(d) = 6 if d = -3, 4 if d = -4 and 2 if d < -4). Here d = -7, h(d) = 1, w(d) = 2.
Equals (polylog(1,u) + polylog(1,u^2) - polylog(1,u^3) + polylog(1,u^4) - polylog(1,u^5) - polylog(1,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1).
Equals (polygamma(0,1/7) + polygamma(0,2/7) - polygamma(0,3/7) + polygamma(0,4/7) - polygamma(0,5/7) - polygamma(0,6/7))/49.
Equals 1/Product_{p prime} (1 - Kronecker(-7,p)/p), where Kronecker(-7,p) = 0 if p = 7, 1 if p == 1, 2 or 4 (mod 7) or -1 if p == 3, 5 or 6 (mod 7). - Amiram Eldar, Dec 17 2023

A346908 Decimal expansion of 2 - Pi / (2*sqrt(2)).

Original entry on oeis.org

8, 8, 9, 2, 7, 9, 2, 6, 5, 4, 6, 0, 4, 0, 8, 4, 3, 8, 2, 4, 6, 0, 2, 9, 7, 5, 2, 4, 8, 4, 8, 2, 6, 5, 7, 5, 3, 4, 6, 3, 4, 4, 5, 7, 7, 6, 5, 6, 0, 7, 7, 4, 4, 4, 2, 2, 8, 6, 5, 1, 0, 9, 8, 2, 6, 0, 8, 9, 1, 3, 0, 1, 7, 2, 5, 1, 3, 1, 5, 2, 2, 3, 5, 6, 1, 6, 8, 2, 6, 6, 3, 0, 8, 8, 0, 8, 6, 9, 0, 6, 5, 9, 1, 4, 7
Offset: 0

Views

Author

Sean A. Irvine, Aug 06 2021

Keywords

Examples

			0.889279265460408438246029752484826575346344577656...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (326).

Crossrefs

Programs

  • Maple
    evalf(2-Pi/sqrt(8), 140);  # Alois P. Heinz, Aug 06 2021
  • Mathematica
    RealDigits[2 - Pi / (2 * Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Jun 07 2023 *)
  • PARI
    2 - Pi/(2*sqrt(2)) \\ Michel Marcus, Aug 06 2021

Formula

Equals 1 + Sum_{k>=1} ( (-1)^k/(4*k-1) - (-1)^k/(4*k+1) ).

A384509 a(n) = number of iterations of z -> z^2 + c(n) with c(n) = ((5/n+1) + (5/n-1)*i)/(n*sqrt(2)) + 1/4 + (1/2)*i to reach |z| > 2, starting with z = 0.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 71, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Luke Bennet, May 31 2025

Keywords

Comments

a(n)/n seems to converge to Pi/(2*sqrt(2)).
a(n) counts the escape time of points outside the Mandelbrot set that converge to the Mandelbrot set's 1/4 period bulb.

Crossrefs

Programs

  • PARI
    c(n) = ((5/n+1) + (5/n-1)*I)/(n*sqrt(2)) + 1/4 + (1/2)*I;
    a(n) = my(z=0, k=0, c=c(n)); while(norml2(z)<=4, z = z^2 + c; k++); k; \\ Michel Marcus, Jun 01 2025
  • Python
    import mpmath
    from mpmath import iv
    def a(n):
        dps = 1
        while True:
            mpmath.iv.dps = dps
            c = iv.mpc(iv.mpf(5) / n + 1, iv.mpf(5) / n - 1)
            c = c / (n * iv.sqrt(2)) + 0.25 + 0.5j
            z = iv.mpc(0, 0)
            counter = 0
            while (z.real**2 + z.imag**2).b <= 4:
                z = z ** 2 + c
                counter += 1
            if (z.real**2 + z.imag**2).a > 4:
                return counter
            dps *= 2
    

A125096 Expansion of -1 + (phi(q) * phi(q^2) + phi(-q^2) * phi(q^4)) / 2 in powers of q.

Original entry on oeis.org

1, 0, 2, 2, 0, 0, 0, 2, 3, 0, 2, 4, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 6, 0, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 6, 2, 0, 2, 4, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 6, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Nov 20 2006

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[MemberQ[{1, 3}, Mod[p, 8]], e + 1, (1 + (-1)^e)/2]; f[2, e_] := If[e > 1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 13 2022 *)
  • PARI
    {a(n) = if( n<1, 0, qfrep([1, 0; 0, 8], n)[n] + qfrep([3, 1; 1, 3], n)[n])}

Formula

a(n) is multiplicative with a(2) = 0, a(2^e) = 2 if e>1, a(p^e) = e+1 if p == 1, 3 (mod 8), a(p^e) = (1+(-1)^e)/2 if p == 5, 7 (mod 8).
a(4*n + 2) = a(8*n + 5) = a(8*n + 7) = 0. a(4*n) = 2 * A002325(n). a(8*n + 1) = A112603(n). a(8*n + 3) = A033761(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(2)) = 1.110720... (A093954). - Amiram Eldar, Oct 13 2022

A161684 Continued fraction for Pi/(2*sqrt(2)).

Original entry on oeis.org

1, 9, 31, 1, 1, 17, 2, 3, 3, 2, 3, 1, 1, 2, 2, 1, 4, 9, 1, 3, 1, 1, 3, 2, 3, 3, 2, 10, 7, 1, 5, 1, 9, 1, 13, 1, 1, 1, 1, 1, 4, 3, 4, 8, 1, 3, 7, 1, 15, 1, 3, 1, 3, 5, 2, 1, 1, 5, 1, 1, 5, 1, 3, 3, 2, 33, 1, 4, 3, 111, 3, 1, 3, 4, 1, 5, 1, 5, 31, 1, 8, 1, 2, 2, 1, 1, 12, 1, 5, 3, 2, 1, 1, 1, 1, 147, 3, 2, 3, 8
Offset: 0

Views

Author

Harry J. Smith, Jun 17 2009

Keywords

Examples

			1.11072073453959156175397024... = 1 + 1/(9 + 1/(31 + 1/(1 + 1/(1 + ...))))
		

Crossrefs

Cf. A093954 Decimal expansion.

Programs

  • Mathematica
    ContinuedFraction[Pi/(2Sqrt[2]),100] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi*sqrt(2)/4); for (n=0, 20000, write("b161684.txt", n, " ", x[n+1])); }

A206161 Decimal expansion of the Fresnel integral int_{x=0..infinity} cos(x^4) dx.

Original entry on oeis.org

8, 3, 7, 4, 0, 6, 6, 9, 6, 7, 6, 9, 0, 8, 6, 4, 8, 3, 0, 8, 3, 6, 0, 2, 7, 2, 2, 1, 8, 0, 8, 3, 2, 2, 6, 1, 3, 7, 9, 0, 6, 1, 6, 6, 1, 2, 9, 9, 0, 1, 0, 8, 4, 4, 3, 4, 1, 8, 9, 8, 0, 0, 2, 0, 8, 6, 0, 1, 9, 0, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Examples

			0.83740669676908648308360272218083226...
		

Crossrefs

Cf. A204067.

Programs

  • Maple
    evalf(Pi*cos(Pi/8)/GAMMA(3/4)/2^(3/2)) ;
  • Mathematica
    RealDigits[ Sqrt[2 + Sqrt[2]]*Gamma[1/4]/8, 10, 72] // First (* Jean-François Alcover, Feb 20 2013 *)

Formula

Equals A093954 * A144981 / A068465 .

A275543 A081585 and A069129 interleaved.

Original entry on oeis.org

1, 1, 9, 17, 33, 49, 73, 97, 129, 161, 201, 241, 289, 337, 393, 449, 513, 577, 649, 721, 801, 881, 969, 1057, 1153, 1249, 1353, 1457, 1569, 1681, 1801, 1921, 2049, 2177, 2313, 2449, 2593, 2737, 2889, 3041, 3201, 3361, 3529, 3697, 3873, 4049, 4233, 4417, 4609
Offset: 0

Views

Author

Daniel Poveda Parrilla, Aug 01 2016

Keywords

Comments

a(A000129(n)) is a square.
(n^2)*a(n) = A275496(n) which is a triangular number.
(A000129(n)^2)*a(A000129(n)) = A275496(A000129(n)) = A001110(n) which is a square triangular number.
a(2n+1)/a(2n) is convergent to 1.

Examples

			a(1) = A275496(1) = 1.
a(5) = A275496(5)/25 = 1225/25 = 49.
a(7) = A275496(7)/49 = 4753/49 = 97.
a(12) = A275496(12)/144 = 41616/144 = 289.
		

Crossrefs

Cf. A081585(n) = a(2n), A069129(n) = a(2n + 1).

Programs

Formula

a(0) = 1; a(n) = A275496(n)/(n^2) for n > 0.
From Colin Barker, Aug 01 2016: (Start)
a(n) = (2*n^2 + (-1)^n).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3.
G.f.: (1 -x +7*x^2 +x^3) / ((1 - x)^3*(1 + x)).
(End)
From Daniel Poveda Parrilla, Aug 18 2016: (Start)
a(2n) = A077221(2n) + 1.
a(2n + 1) = A077221(2n + 1). (End)
Sum_{n>=0} 1/a(n) = (1 + (tan(c) + coth(c))*c)/2, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022

A335828 Numerators of coefficients in a power series expansion of the distance between two bodies falling freely towards each other along a straight line under the influence of their mutual gravitational attraction.

Original entry on oeis.org

1, 1, 11, 73, 887, 136883, 7680089, 26838347, 14893630313, 1908777537383, 2422889987331397, 233104477447558811, 2430782624763507659, 14420190617640617313953, 4515429325405165295004389, 812454316441781379614873497, 166481868581561511154267399013
Offset: 1

Views

Author

Amiram Eldar, Jun 25 2020

Keywords

Comments

Consider two point objects with masses m_1 and m_2 that are starting to fall towards each other from rest at time t = 0 and initial distance r_0. Foong (2008) gave the solution for the distance as a function of time, r(t) = r_0 * f(t/t_0), where t_0 = sqrt(r_0^3/(G*(m1+m2))), G is the gravitational constant (A070058), and f(x) = 1 - Sum_{n>=1} c(n) * x^(2*n) is a dimensionless function. c(n) are the rational coefficients whose numerators are given in this sequence. The denominators are given in A335829. The collision occurs when f(x) = 0, at x = Pi/(2*sqrt(2)) (A093954), which corresponds to the time t = (Pi/(2*sqrt(2))) * t_0.
A similar expansion was given by Ernst Meissel in his study of the three-body problem in 1882. In Meissel's expansion the coefficients are c(n)/2^n.

Examples

			The series begins with f(x) = 1 - (1/2)*x^2 - (1/12)*x^4 - (11/360)*x^6 - ...
		

References

  • Sudhir Ranjan Jain, Mechanics, Waves and Thermodynamics: An Example-based Approach, Cambridge University Press, 2016. See page 97.
  • Ernst Meissel, Über Reihen, denen man bei der numerischen Lösung des Problems der Dreikörperproblems begegnet, wenn die Anfangsgeschwindigkeiten Null sind, in: Jahresbericht über die Realschule in Kiel: Während des Schuljahres 1881/82, A. F. Jensen, Kiel, 1882, pp. 1-11.

Crossrefs

Cf. A070058, A093954, A202623, A335829 (denominators).

Programs

  • Mathematica
    c[1] = 1/2; c[n_] := c[n] = (2*Sum[(n - k)*(2*n - 2*k - 1)*c[n - k]*c[k], {k, 1, n - 1}] - Sum[(n - m)*(2*n - 2*m - 1)*c[n - m]*c[m - k]*c[k], {m, 2, n - 1}, {k, 1, m - 1}])/(n*(2*n - 1)); Numerator @ Array[c, 17]
    (* or *)
    Quiet[-Numerator @ CoefficientList[AsymptoticDSolveValue[{y[x]*y'[x]^2 == 2*(1-y[x]), y[0] == 1}, y[x], {x, 0, 25}], x][[3;;-1;;2]]] (* requires Mathematica 11.3+ *)

Formula

a(n) = numerator(c(n)), c(1) = 1/2, c(n) = (2 * Sum_{k=1..n-1} (n-k)*(2*n-2*k-1)*c(n-k)*c(k) - Sum_{m=2..n-1} (n-m)*(2*n-2*m-1)*c(n-m) * Sum_{k=1..m-1} c(m-k)*c(k))/(n*(2*n - 1)).
c(n) ~ c_0 * n^(-5/3) * (Pi/(2*sqrt(2)))^(-2*n), where c_0 = (3*Pi)^(2/3) / (18*Gamma(4/3)) = 0.277587...

A206769 Decimal expansion of the Fresnel integral Integral_{x=0..oo} sin(x^4) dx.

Original entry on oeis.org

3, 4, 6, 8, 6, 5, 2, 1, 1, 0, 2, 3, 8, 0, 9, 4, 9, 6, 0, 4, 2, 0, 3, 5, 1, 0, 0, 0, 4, 7, 1, 1, 3, 3, 2, 5, 3, 1, 8, 1, 1, 8, 7, 8, 0, 5, 7, 1, 6, 2, 0, 0, 8, 2, 3, 3, 6, 4, 4, 9, 2, 4, 3, 8, 6, 8, 1, 1, 8, 2, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 10 2013

Keywords

Comments

Imaginary part associated with A206161.

Examples

			0.3468652110238094960420351000471...
		

Crossrefs

Programs

  • Maple
    evalf(Pi*sin(Pi/8)/GAMMA(3/4)/2^(3/2)) ;
  • Mathematica
    RealDigits[Pi * Sin[Pi/8] / (2^(3/2) * Gamma[3/4]), 10, 120][[1]] (* Amiram Eldar, Aug 23 2024 *)

Formula

Equals A093954 * A182168 / A068465.
(this constant)^2 + A206161 ^2 = A068467 ^2.
Previous Showing 21-30 of 32 results. Next