A140444
Primes congruent to 1 (mod 14).
Original entry on oeis.org
29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1709, 1723, 1877, 1933, 2003, 2017, 2087
Offset: 1
Primes congruent to 1 (mod k):
A000040 (k=1),
A065091 (k=2),
A002476 (k=3 and 6),
A002144 (k=4),
A030430 (k=5 and 10), this sequence (k=7 and 14),
A007519 (k=8),
A061237 (k=9 and 18),
A141849 (k=11 and 22),
A068228 (k=12),
A268753 (k=13 and 26),
A132230 (k=15 and 30),
A094407 (k=16),
A129484 (k=17 and 34),
A141868 (k=19 and 38),
A141881 (k=20),
A124826 (k=21 and 42),
A212374 (k=23 and 46),
A107008 (k=24),
A141927 (k=25 and 50),
A141948 (k=27 and 54),
A093359 (k=28),
A141977 (k=29 and 58),
A142005 (k=31 and 62),
A133870 (k=32).
-
Filtered(Filtered([1..2300],n->n mod 14=1),IsPrime); # Muniru A Asiru, Jun 27 2018
-
[p: p in PrimesUpTo(3000)|p mod 14 in {1}]; // Vincenzo Librandi, Dec 18 2010
-
select(isprime,select(n->modp(n,14)=1,[$1..2300])); # Muniru A Asiru, Jun 27 2018
-
Select[Prime[Range[500]], Mod[#, 14] == 1 &] (* Harvey P. Dale, Mar 21 2011 *)
-
is(n)=isprime(n) && n%14==1 \\ Charles R Greathouse IV, Jul 02 2016
A141194
Primes of the form 16k+7.
Original entry on oeis.org
7, 23, 71, 103, 151, 167, 199, 263, 311, 359, 439, 487, 503, 599, 631, 647, 727, 743, 823, 839, 887, 919, 967, 983, 1031, 1063, 1223, 1303, 1319, 1367, 1399, 1447, 1511, 1543, 1559, 1607, 1783, 1831, 1847, 1879, 2039, 2087, 2311, 2423, 2503, 2551, 2647
Offset: 1
A141195
Primes of the form 16k+11.
Original entry on oeis.org
11, 43, 59, 107, 139, 251, 283, 331, 347, 379, 443, 491, 523, 571, 587, 619, 683, 811, 827, 859, 907, 971, 1019, 1051, 1163, 1259, 1291, 1307, 1451, 1483, 1499, 1531, 1579, 1627, 1723, 1787, 1867, 1931, 1979, 2011, 2027, 2203, 2251, 2267, 2347, 2411, 2459
Offset: 1
A141196
Primes of the form 16k+13.
Original entry on oeis.org
13, 29, 61, 109, 157, 173, 269, 317, 349, 397, 461, 509, 541, 557, 653, 701, 733, 797, 829, 877, 941, 1021, 1069, 1117, 1181, 1213, 1229, 1277, 1373, 1453, 1549, 1597, 1613, 1693, 1709, 1741, 1789, 1901, 1933, 1949, 1997, 2029, 2141, 2221, 2237, 2269
Offset: 1
A155943
Primes p such that 16*p + 1 is also prime.
Original entry on oeis.org
7, 37, 61, 97, 151, 163, 181, 193, 271, 313, 331, 337, 397, 421, 487, 523, 547, 571, 643, 691, 727, 757, 853, 877, 967, 1033, 1087, 1093, 1231, 1237, 1297, 1303, 1423, 1471, 1567, 1657, 1747, 1777, 1801, 1831, 1867, 1987, 2083, 2113, 2221, 2251, 2281, 2437
Offset: 1
A155941
Numbers n such that 16*n+1 is not prime.
Original entry on oeis.org
0, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 23, 24, 26, 29, 30, 31, 32, 33, 34, 35, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95
Offset: 1
Distribution of a(n)>0 in the following triangular array:
*;
*,*;
*,*,3;
*,*,*,5;
2,*,*,*,*;
*,4,*,*,*,*;
*,*,*,*,*,*,14;
*,*,*,*,*,*,*,18;
*,*,*,*,13,*,*,*,*;
*,*,*,*,*,17,*,*,*,*;
*,*,10,*,*,*,*,*,*,*,33;
*,*,*,14,*,*,*,*,*,*,*,39;
5,*,*,*,*,*,*,*,32,*,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h)/8 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
A155942
Numbers n such that 16n+1 is a prime.
Original entry on oeis.org
1, 6, 7, 12, 15, 16, 21, 22, 25, 27, 28, 36, 37, 40, 42, 48, 55, 58, 61, 63, 72, 75, 76, 78, 81, 85, 88, 93, 97, 100, 106, 111, 117, 118, 126, 130, 132, 133, 135, 142, 151, 162, 163, 166, 168, 172, 175, 177, 181, 190, 193, 195, 196, 198, 201, 207, 208, 210, 216, 226
Offset: 1
A325068
Prime numbers congruent to 1 modulo 16 representable neither by x^2 + 32*y^2 nor by x^2 + 64*y^2.
Original entry on oeis.org
17, 97, 193, 241, 401, 433, 449, 641, 673, 769, 929, 977, 1009, 1297, 1361, 1409, 1489, 1697, 1873, 2017, 2081, 2161, 2417, 2609, 2753, 2801, 2897, 3041, 3169, 3329, 3457, 3617, 3697, 3793, 3889, 4129, 4241, 4337, 4561, 4673, 5009, 5153, 5281, 5441, 5521, 5857
Offset: 1
Regarding 17:
- 17 is a prime number,
- 17 = 16*1 + 1,
- 17 is representable neither by x^2 + 32*y^2 nor by x^2 + 64*y^2,
- hence 17 belongs to the sequence.
A125040
Primes of the form 16k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^8 + 1}, where Q is the product of previous terms in the sequence.
Original entry on oeis.org
17, 47441, 5136468762577, 1217, 2413992194819190142614641, 113, 52654897, 241, 5310928841473, 673
Offset: 1
a(3) = 5136468762577 is the smallest prime divisor of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441.
- G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.
-
a = {17}; q = 1;
For[n = 2, n <= 3, n++,
q = q*Last[a];
AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]],
Mod[#, 16] == 1 &]]];
];
a (* Robert Price, Jul 14 2015 *)
A282997
Primes of the form (p^2 + q^2)/2 such that |q^2 - p^2| is square, where p and q are prime.
Original entry on oeis.org
17, 97, 16561, 89041, 2579199841, 3497992081, 5645806321, 21103207681, 428888025121, 686770904161, 2726023770721, 4017427557361, 6831989588161, 6933052766641, 10138513506001, 19387278797041, 23452359542401, 35287577206801, 40057354132561, 62093498771041, 64116963608881
Offset: 1
17 = (3^2 + 5^2)/2 and 5^2 - 3^2 = 4^2.
-
lst = {}; a = 2; While[a < 2501, b = Mod[a, 2] + 1; While[b < a, If[ PrimeQ[a^4 + b^4] && PrimeOmega[a^4 - b^4] == 2, AppendTo[lst, (a^4 + b^4)]]; b += 2]; a++]; lst (* Robert G. Wilson v, Feb 27 2017 *)
-
list(lim)=my(v=List(),t,n); while((t=n++^4+(n+1)^4)<=lim, if(isprime(t) && isprime(n^2+(n+1)^2) && isprime(2*n+1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 26 2017
Comments