cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A140444 Primes congruent to 1 (mod 14).

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1709, 1723, 1877, 1933, 2003, 2017, 2087
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Comments

From Federico Provvedi, May 24 2018: (Start)
Also primes congruent to 1 (mod 7).
For every prime p > 2, primes congruent to 1 (mod p) are also congruent to 1 (mod 2*p).
Conjecture: The monic polynomial P(x) = (x+1)^7/x - 1/x = ((x+1)^7-1)/x is irreducible but factorizable over Galois field (mod a(n)) with exactly 6 distinct irreducible factors of degree 1. Examples:
P(x) == (5 + x) (6 + x) (7 + x) (10 + x) (14 + x) (23 + x) (mod 29)
P(x) == (3 + x) (9 + x) (23 + x) (28 + x) (33 + x) (40 + x) (mod 43)
P(x) == (24 + x) (27 + x) (35 + x) (40 + x) (42 + x) (52 + x) (mod 71)
P(x) == (5 + x) (8 + x) (65 + x) (84 + x) (86 + x) (98 + x) (mod 113)
... (End).
Primes in A131877. - Eric Chen, Jun 14 2018

Crossrefs

A090613 gives prime index.
Cf. A090614.
Cf. A131877.
Primes congruent to 1 (mod k): A000040 (k=1), A065091 (k=2), A002476 (k=3 and 6), A002144 (k=4), A030430 (k=5 and 10), this sequence (k=7 and 14), A007519 (k=8), A061237 (k=9 and 18), A141849 (k=11 and 22), A068228 (k=12), A268753 (k=13 and 26), A132230 (k=15 and 30), A094407 (k=16), A129484 (k=17 and 34), A141868 (k=19 and 38), A141881 (k=20), A124826 (k=21 and 42), A212374 (k=23 and 46), A107008 (k=24), A141927 (k=25 and 50), A141948 (k=27 and 54), A093359 (k=28), A141977 (k=29 and 58), A142005 (k=31 and 62), A133870 (k=32).

Programs

  • GAP
    Filtered(Filtered([1..2300],n->n mod 14=1),IsPrime); # Muniru A Asiru, Jun 27 2018
  • Magma
    [p: p in PrimesUpTo(3000)|p mod 14 in {1}]; // Vincenzo Librandi, Dec 18 2010
    
  • Maple
    select(isprime,select(n->modp(n,14)=1,[$1..2300])); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Select[Prime[Range[500]], Mod[#, 14] == 1 &]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    is(n)=isprime(n) && n%14==1 \\ Charles R Greathouse IV, Jul 02 2016
    

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 02 2016

Extensions

Simpler definition from N. J. A. Sloane, Jul 11 2008

A141194 Primes of the form 16k+7.

Original entry on oeis.org

7, 23, 71, 103, 151, 167, 199, 263, 311, 359, 439, 487, 503, 599, 631, 647, 727, 743, 823, 839, 887, 919, 967, 983, 1031, 1063, 1223, 1303, 1319, 1367, 1399, 1447, 1511, 1543, 1559, 1607, 1783, 1831, 1847, 1879, 2039, 2087, 2311, 2423, 2503, 2551, 2647
Offset: 1

Views

Author

T. D. Noe, Jun 12 2008

Keywords

Crossrefs

Programs

A141195 Primes of the form 16k+11.

Original entry on oeis.org

11, 43, 59, 107, 139, 251, 283, 331, 347, 379, 443, 491, 523, 571, 587, 619, 683, 811, 827, 859, 907, 971, 1019, 1051, 1163, 1259, 1291, 1307, 1451, 1483, 1499, 1531, 1579, 1627, 1723, 1787, 1867, 1931, 1979, 2011, 2027, 2203, 2251, 2267, 2347, 2411, 2459
Offset: 1

Views

Author

T. D. Noe, Jun 12 2008

Keywords

Crossrefs

Programs

A141196 Primes of the form 16k+13.

Original entry on oeis.org

13, 29, 61, 109, 157, 173, 269, 317, 349, 397, 461, 509, 541, 557, 653, 701, 733, 797, 829, 877, 941, 1021, 1069, 1117, 1181, 1213, 1229, 1277, 1373, 1453, 1549, 1597, 1613, 1693, 1709, 1741, 1789, 1901, 1933, 1949, 1997, 2029, 2141, 2221, 2237, 2269
Offset: 1

Views

Author

T. D. Noe, Jun 12 2008

Keywords

Comments

Which sequence, this or A141194, produces more primes? The race is very close. For example, A141194(1000)=80599 and A141196(1000)=80909, a difference of just 32 primes after a thousand terms. - Art Baker, Aug 07 2019

Crossrefs

Programs

A155943 Primes p such that 16*p + 1 is also prime.

Original entry on oeis.org

7, 37, 61, 97, 151, 163, 181, 193, 271, 313, 331, 337, 397, 421, 487, 523, 547, 571, 643, 691, 727, 757, 853, 877, 967, 1033, 1087, 1093, 1231, 1237, 1297, 1303, 1423, 1471, 1567, 1657, 1747, 1777, 1801, 1831, 1867, 1987, 2083, 2113, 2221, 2251, 2281, 2437
Offset: 1

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500)| IsPrime(16*p + 1)]; // Vincenzo Librandi, Oct 30 2012
  • Mathematica
    Select[Prime[Range[2500]], PrimeQ[(16*# + 1)]&] (* Vincenzo Librandi, Oct 30 2012 *)

A155941 Numbers n such that 16*n+1 is not prime.

Original entry on oeis.org

0, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 23, 24, 26, 29, 30, 31, 32, 33, 34, 35, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 56, 57, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 77, 79, 80, 82, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95
Offset: 1

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Examples

			Distribution of a(n)>0 in the following triangular array:
*;
*,*;
*,*,3;
*,*,*,5;
2,*,*,*,*;
*,4,*,*,*,*;
*,*,*,*,*,*,14;
*,*,*,*,*,*,*,18;
*,*,*,*,13,*,*,*,*;
*,*,*,*,*,17,*,*,*,*;
*,*,10,*,*,*,*,*,*,*,33;
*,*,*,14,*,*,*,*,*,*,*,39;
5,*,*,*,*,*,*,*,32,*,*,*,*; etc.
where * marks the non-integer values of (2*h*k + k + h)/8 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100] |not IsPrime(16*n+1)]; // Vincenzo Librandi, Oct 15 2012
  • Mathematica
    Select[Range[0, 100], !PrimeQ[16 # + 1] &] (* Vincenzo Librandi, Oct 15 2012 *)

Extensions

0 added by Arkadiusz Wesolowski, Aug 03 2011

A155942 Numbers n such that 16n+1 is a prime.

Original entry on oeis.org

1, 6, 7, 12, 15, 16, 21, 22, 25, 27, 28, 36, 37, 40, 42, 48, 55, 58, 61, 63, 72, 75, 76, 78, 81, 85, 88, 93, 97, 100, 106, 111, 117, 118, 126, 130, 132, 133, 135, 142, 151, 162, 163, 166, 168, 172, 175, 177, 181, 190, 193, 195, 196, 198, 201, 207, 208, 210, 216, 226
Offset: 1

Views

Author

Vincenzo Librandi, Jan 31 2009

Keywords

Crossrefs

Programs

A325068 Prime numbers congruent to 1 modulo 16 representable neither by x^2 + 32*y^2 nor by x^2 + 64*y^2.

Original entry on oeis.org

17, 97, 193, 241, 401, 433, 449, 641, 673, 769, 929, 977, 1009, 1297, 1361, 1409, 1489, 1697, 1873, 2017, 2081, 2161, 2417, 2609, 2753, 2801, 2897, 3041, 3169, 3329, 3457, 3617, 3697, 3793, 3889, 4129, 4241, 4337, 4561, 4673, 5009, 5153, 5281, 5441, 5521, 5857
Offset: 1

Views

Author

Rémy Sigrist, Mar 27 2019

Keywords

Comments

Kaplansky showed that prime numbers congruent to 1 modulo 16 are representable by both or neither of the quadratic forms x^2 + 32*y^2 and x^2 + 64*y^2. A325067 corresponds to those representable by both, and this sequence corresponds to those representable by neither.

Examples

			Regarding 17:
- 17 is a prime number,
- 17 = 16*1 + 1,
- 17 is representable neither by x^2 + 32*y^2 nor by x^2 + 64*y^2,
- hence 17 belongs to the sequence.
		

Crossrefs

Programs

  • PARI
    See Links section.

A125040 Primes of the form 16k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^8 + 1}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 47441, 5136468762577, 1217, 2413992194819190142614641, 113, 52654897, 241, 5310928841473, 673
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^8 + 1 are congruent to 1 modulo 16.

Examples

			a(3) = 5136468762577 is the smallest prime divisor of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Programs

  • Mathematica
    a = {17}; q = 1;
    For[n = 2, n <= 3, n++,
        q = q*Last[a];
        AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]],
        Mod[#, 16] == 1 &]]];
        ];
    a (* Robert Price, Jul 14 2015 *)

Extensions

a(5)-a(10) from Max Alekseyev, Oct 18 2008

A282997 Primes of the form (p^2 + q^2)/2 such that |q^2 - p^2| is square, where p and q are prime.

Original entry on oeis.org

17, 97, 16561, 89041, 2579199841, 3497992081, 5645806321, 21103207681, 428888025121, 686770904161, 2726023770721, 4017427557361, 6831989588161, 6933052766641, 10138513506001, 19387278797041, 23452359542401, 35287577206801, 40057354132561, 62093498771041, 64116963608881
Offset: 1

Views

Author

Thomas Ordowski and Altug Alkan, Feb 26 2017

Keywords

Comments

Primes of the form x^4 + y^4 such that q = x^2 + y^2 and p = |y^2 - x^2| are both primes.
Primes of the form n^4 + (n+1)^4 such that q = n^2 + (n+1)^2 and p = 2n+1 are both primes; so for n in A128780.
Primes of the form x^4 + y^4 such that |y^4 - x^4| is a semiprime.
From Robert G. Wilson v, Feb 26 2017: (Start)
{q, p, a(n) = (p^2+q^2)/2}
{5, 3, 17}
{13, 5, 97}
{181, 19, 16561}
{421, 29, 89041}
{71821, 379, 2579199841}
{83641, 409, 3497992081}
{106261, 461, 5645806321}
{205441, 641, 21103207681}
{926161, 1361, 428888025121}
{1171981, 1531, 686770904161}
(End)

Examples

			17 = (3^2 + 5^2)/2 and 5^2 - 3^2 = 4^2.
		

Crossrefs

Subsequence of A002645 and of A094407.

Programs

  • Mathematica
    lst = {}; a = 2; While[a < 2501, b = Mod[a, 2] + 1; While[b < a, If[ PrimeQ[a^4 + b^4] && PrimeOmega[a^4 - b^4] == 2, AppendTo[lst, (a^4 + b^4)]]; b += 2]; a++]; lst (* Robert G. Wilson v, Feb 27 2017 *)
  • PARI
    list(lim)=my(v=List(),t,n); while((t=n++^4+(n+1)^4)<=lim, if(isprime(t) && isprime(n^2+(n+1)^2) && isprime(2*n+1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 26 2017

Formula

a(n) = A128780(n)^4 + (A128780(n)+1)^4.
a(n) == 1 (mod 16).

Extensions

a(11) onward from Robert G. Wilson v, Feb 26 2017
Previous Showing 11-20 of 21 results. Next