A098569
Row sums of the triangle of triangular binomial coefficients given by A098568.
Original entry on oeis.org
1, 2, 5, 14, 43, 143, 510, 1936, 7775, 32869, 145665, 674338, 3251208, 16282580, 84512702, 453697993, 2514668492, 14367066833, 84489482201, 510760424832, 3170267071640, 20182121448815, 131642848217536, 878999194493046, 6003048930287115, 41899203336942661
Offset: 0
In reference to comment about s(1)s(2)...s(n) above, a(3) = 14 = |{0000, 0001, 0002, 0003, 0010, 0020, 0100, 0012, 0013, 0023, 0101, 0103, 0120, 0123}|. - _Frank Ruskey_, Apr 17 2011
From _Paul D. Hanna_, Aug 24 2025: (Start)
The following array (A131338) illustrates a process that generates these numbers. Start with [1] in row n = 0. For n > 0, form row n by concatenating n 1's with the partial sums of the prior row. The row sums of row n equals a(n) for n >= 0; equivalently, the final term of row n+1 equals a(n). Continuing in this way generates all the terms of this sequence.
n = 0; [1];
n = 1: [1, 1];
n = 2; [1, 1, 1, 2];
n = 3: [1, 1, 1, 1, 2, 3, 5];
n = 4: [1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14];
n = 5: [1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43];
n = 6: [1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143];
n = 7: [1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196, 267, 367, 510];
... (End)
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Christian Bean, A. Claesson and H. Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2015-2017.
- Beáta Bényi, Toufik Mansour, and José L. Ramírez, Pattern Avoidance in Weak Ascent Sequences, arXiv:2309.06518 [math.CO], 2023.
- Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes and Sergey Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations, arXiv:0806.0666 [math.CO], 2008-2009.
- William Y. C. Chen, Alvin Y.L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics Volume 20, Issue 1 (2013), #P76.
- CombOS - Combinatorial Object Server, Generate pattern-avoiding permutations
- Mark Dukes and Peter R. W. McNamara, Refining the bijections among ascent sequences, (2+2)-free posets, integer matrices and pattern-avoiding permutations, arXiv:1807.11505 [math.CO], 2018-2019; Journal of Combinatorial Theory (Series A), 167 (2019), 403-430.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
- Lara Pudwell, Enumeration Schemes for Pattern-Avoiding Words and Permutations, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
- Lara Pudwell, Enumeration schemes for permutations avoiding barred patterns, El. J. Combinat. 17 (1) (2010) R29.
-
A098569 := proc(n)
add( binomial((k+1)*(k+2)/2+n-k-1,n-k),k=0..n) ;
end proc:
seq(A098569(n),n=0..40) ; # Georg Fischer, Oct 29 2023
-
Table[Sum[Binomial[(k+1)*(k+2)/2+n-k-1, n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 05 2015 *)
-
a(n)=sum(k=0,n,binomial((k+1)*(k+2)/2+n-k-1,n-k))
A121434
Matrix inverse of triangle A098568, where A098568(n, k) = C( (k+1)*(k+2)/2 + n-k-1, n-k) for n>=k>=0.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -7, 12, -6, 1, 0, 37, -67, 39, -10, 1, 0, -268, 498, -311, 95, -15, 1, 0, 2496, -4701, 3045, -1015, 195, -21, 1, 0, -28612, 54298, -35901, 12560, -2675, 357, -28, 1, 0, 391189, -745734, 499157, -179717, 40635, -6097, 602, -36, 1, 0, -6230646, 11911221, -8034267, 2945010
Offset: 0
Triangle begins:
1;
0, 1;
0, -1, 1;
0, 2, -3, 1;
0, -7, 12, -6, 1;
0, 37, -67, 39, -10, 1;
0, -268, 498, -311, 95, -15, 1;
0, 2496, -4701, 3045, -1015, 195, -21, 1;
0, -28612, 54298, -35901, 12560, -2675, 357, -28, 1;
0, 391189, -745734, 499157, -179717, 40635, -6097, 602, -36, 1; ...
-
/* Matrix Inverse of A098568 */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r-2,r-c)))); return((M^-1)[n+1,k+1])
-
/* Obtain by G.F. */ T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2)), n-k)
A131338
Triangle, read by rows of n*(n+1)/2 + 1 terms, that starts with a '1' in row 0 with row n consisting of n '1's followed by the partial sums of the prior row.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196
Offset: 0
Triangle begins:
1;
1, 1;
1,1, 1,2;
1,1,1, 1,2,3,5;
1,1,1,1, 1,2,3,4,6,9,14;
1,1,1,1,1, 1,2,3,4,5,7,10,14,20,29,43;
1,1,1,1,1,1, 1,2,3,4,5,6,8,11,15,20,27,37,51,71,100,143;
1,1,1,1,1,1,1, 1,2,3,4,5,6,7,9,12,16,21,27,35,46,61,81,108,145,196,267,367,510; ...
Row sums equal the row sums (A098569) of triangle A098568,
where A098568(n, k) = binomial( (k+1)*(k+2)/2 + n-k-1, n-k):
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 21, 10, 1;
1, 15, 56, 55, 15, 1;
1, 21, 126, 220, 120, 21, 1; ...
-
T(n,k)=if(k>n*(n+1)/2 || k<0,0,if(k<=n,1,sum(i=0,k-n,T(n-1,i))))
for(n=0, 10, for(k=0, n*(n+1)/2, print1(T(n, k), ", ")); print(""))
A290428
Array read by antidiagonals: T(n,k) is the number of graphs with n edges and k vertices, allowing loops and multi-edges.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 4, 1, 0, 1, 2, 6, 6, 1, 0, 1, 2, 7, 14, 9, 1, 0, 1, 2, 7, 20, 28, 12, 1, 0, 1, 2, 7, 22, 53, 52, 16, 1, 0, 1, 2, 7, 23, 69, 125, 93, 20, 1, 0, 1, 2, 7, 23, 76, 198, 287, 152, 25, 1, 0, 1, 2, 7, 23, 78, 245, 550, 606, 242, 30, 1, 0
Offset: 0
1 1 1 1 1 1 1 1 1...
0 1 2 2 2 2 2 2 2...
0 1 4 6 7 7 7 7 7...
0 1 6 14 20 22 23 23 23...
0 1 9 28 53 69 76 78 79...
0 1 12 52 125 198 245 264 271...
0 1 16 93 287 550 782 915 973...
0 1 20 152 606 1441 2392
0 1 25 242 1226 3611
-
rows = 12;
permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]] ]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c + 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
col[k_] := col[k] = Module[{s = O[x]^rows}, Do[s += permcount[p]*1/edges[p, 1 - x^# + O[x]^rows&], {p, IntegerPartitions[k]}]; s/k!] // CoefficientList[#, x]&;
T[0, ] = 1; T[, 0] = 0;
T[n_, k_] := col[k][[n + 1]];
Table[T[n-k, k], {n, 0, rows-1}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
T(m, n=m) = {Mat(vector(n+1, n, my(s=O(x*x^m)); forpart(p=n-1, s+=permcount(p)*1/edges(p,i->1-x^i+O(x*x^m))); Col(s/(n-1)!)))}
{ my(A=T(8)); for(n=1, #A, print(A[n,])) } \\ Andrew Howroyd, Oct 22 2019
A122176
Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k + 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 6, 5, 1, 5, 10, 15, 8, 1, 6, 15, 35, 36, 12, 1, 7, 21, 70, 120, 78, 17, 1, 8, 28, 126, 330, 364, 153, 23, 1, 9, 36, 210, 792, 1365, 969, 276, 30, 1, 10, 45, 330, 1716, 4368, 4845, 2300, 465, 38, 1, 11, 55, 495, 3432, 12376, 20349, 14950, 4960, 741, 47, 1
Offset: 0
Triangle begins:
1;
2, 1;
3, 3, 1;
4, 6, 5, 1;
5, 10, 15, 8, 1;
6, 15, 35, 36, 12, 1;
7, 21, 70, 120, 78, 17, 1;
8, 28, 126, 330, 364, 153, 23, 1;
9, 36, 210, 792, 1365, 969, 276, 30, 1; ...
-
Flatten[Table[Binomial[(k(k+1))/2+n-k+1,n-k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Mar 18 2013 *)
-
T(n,k)=if(n
A122177
Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k + 2, n-k) for n>=k>=0.
Original entry on oeis.org
1, 3, 1, 6, 4, 1, 10, 10, 6, 1, 15, 20, 21, 9, 1, 21, 35, 56, 45, 13, 1, 28, 56, 126, 165, 91, 18, 1, 36, 84, 252, 495, 455, 171, 24, 1, 45, 120, 462, 1287, 1820, 1140, 300, 31, 1, 55, 165, 792, 3003, 6188, 5985, 2600, 496, 39, 1, 66, 220, 1287, 6435, 18564, 26334
Offset: 0
Triangle begins:
1;
3, 1;
6, 4, 1;
10, 10, 6, 1;
15, 20, 21, 9, 1;
21, 35, 56, 45, 13, 1;
28, 56, 126, 165, 91, 18, 1;
36, 84, 252, 495, 455, 171, 24, 1;
45, 120, 462, 1287, 1820, 1140, 300, 31, 1; ...
-
A122177[n_, k_] := Binomial[k*(k + 1)/2 + n - k + 2, n - k];
Table[A122177[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 23 2024 *)
-
T(n,k)=if(n
A122175
Triangle, read by rows, where T(n,k) = C( k*(k+1)/2 + n-k, n-k) for n>=k>=0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 7, 1, 1, 5, 20, 28, 11, 1, 1, 6, 35, 84, 66, 16, 1, 1, 7, 56, 210, 286, 136, 22, 1, 1, 8, 84, 462, 1001, 816, 253, 29, 1, 1, 9, 120, 924, 3003, 3876, 2024, 435, 37, 1, 1, 10, 165, 1716, 8008, 15504, 12650, 4495, 703, 46, 1, 1, 11, 220
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 10, 7, 1;
1, 5, 20, 28, 11, 1;
1, 6, 35, 84, 66, 16, 1;
1, 7, 56, 210, 286, 136, 22, 1;
1, 8, 84, 462, 1001, 816, 253, 29, 1; ...
-
Table[Binomial[(k(k+1))/2+n-k,n-k],{n,0,20},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 22 2016 *)
-
T(n,k)=if(n
A122178
Triangle, read by rows, where T(n,k) = C( n*(n+1)/2 + n-k - 1, n-k), for n>=k>=0.
Original entry on oeis.org
1, 1, 1, 6, 3, 1, 56, 21, 6, 1, 715, 220, 55, 10, 1, 11628, 3060, 680, 120, 15, 1, 230230, 53130, 10626, 1771, 231, 21, 1, 5379616, 1107568, 201376, 31465, 4060, 406, 28, 1, 145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1, 4431613550
Offset: 0
Triangle begins:
1;
1, 1;
6, 3, 1;
56, 21, 6, 1;
715, 220, 55, 10, 1;
11628, 3060, 680, 120, 15, 1;
230230, 53130, 10626, 1771, 231, 21, 1;
5379616, 1107568, 201376, 31465, 4060, 406, 28, 1;
145008513, 26978328, 4496388, 658008, 82251, 8436, 666, 36, 1; ...
A121436
Matrix inverse of triangle A122176, where A122176(n,k) = C( k*(k+1)/2 + n-k + 1, n-k) for n>=k>=0.
Original entry on oeis.org
1, -2, 1, 3, -3, 1, -7, 9, -5, 1, 26, -37, 25, -8, 1, -141, 210, -155, 60, -12, 1, 1034, -1575, 1215, -516, 126, -17, 1, -9693, 14943, -11806, 5270, -1426, 238, -23, 1, 111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1, -1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1
Offset: 0
Triangle begins:
1;
-2, 1;
3, -3, 1;
-7, 9, -5, 1;
26, -37, 25, -8, 1;
-141, 210, -155, 60, -12, 1;
1034, -1575, 1215, -516, 126, -17, 1;
-9693, 14943, -11806, 5270, -1426, 238, -23, 1;
111522, -173109, 138660, -63696, 18267, -3417, 414, -30, 1;
-1528112, 2381814, -1923765, 899226, -267084, 53431, -7337, 675, -38, 1; ...
-
/* Matrix Inverse of A122176 */
{T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r,r-c)))); return((M^-1)[n+1,k+1])}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
/* Obtain by G.F. */
{T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+2)), n-k)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
A121435
Matrix inverse of triangle A122175, where A122175(n,k) = C( k*(k+1)/2 + n-k, n-k) for n>=k>=0.
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -2, 5, -4, 1, 7, -19, 18, -7, 1, -37, 104, -106, 49, -11, 1, 268, -766, 809, -406, 110, -16, 1, -2496, 7197, -7746, 4060, -1210, 216, -22, 1, 28612, -82910, 90199, -48461, 15235, -3032, 385, -29, 1, -391189, 1136923, -1244891, 678874, -220352, 46732, -6699, 638, -37, 1
Offset: 0
Triangle begins:
1;
-1, 1;
1, -2, 1;
-2, 5, -4, 1;
7, -19, 18, -7, 1;
-37, 104, -106, 49, -11, 1;
268, -766, 809, -406, 110, -16, 1;
-2496, 7197, -7746, 4060, -1210, 216, -22, 1;
28612, -82910, 90199, -48461, 15235, -3032, 385, -29, 1;
-391189, 1136923, -1244891, 678874, -220352, 46732, -6699, 638, -37, 1; ...
-
/* Matrix Inverse of A122175 */ T(n,k)=local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial((c-1)*(c-2)/2+r-1,r-c)))); return((M^-1)[n+1,k+1])
-
/* Obtain by G.F. */ T(n,k)=polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^n))^(j*(j+1)/2+j*k+k*(k+1)/2+1)), n-k)
Showing 1-10 of 12 results.
Comments