cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A015551 Expansion of x/(1 - 6*x - 5*x^2).

Original entry on oeis.org

0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0

Views

Author

Keywords

Comments

Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=(B^n)1,2 for instance. - _Paul Barry, Feb 13 2004
Pisano period lengths: 1, 2, 4, 4, 1, 4, 42, 8, 12, 2, 10, 4, 12, 42, 4, 16, 96, 12, 360, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
  • PARI
    a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 6*a(n-1) + 5*a(n-2).
a(n) = sqrt(14)*(3+sqrt(14))^n/28 - sqrt(14)*(3-sqrt(14))^n/28. - Paul Barry, Feb 13 2004

A234357 Array T(n,k) by antidiagonals: T(n,k) = n^k * Fibonacci(k).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 18, 24, 5, 5, 32, 81, 80, 8, 6, 50, 192, 405, 256, 13, 7, 72, 375, 1280, 1944, 832, 21, 8, 98, 648, 3125, 8192, 9477, 2688, 34, 9, 128, 1029, 6480, 25000, 53248, 45927, 8704, 55, 10, 162, 1536, 12005, 62208, 203125, 344064, 223074, 28160, 89, 11, 200, 2187
Offset: 0

Views

Author

Ralf Stephan, Dec 24 2013

Keywords

Examples

			Array starts:
1,  2,   3,    5,     8,     13,    21,   34, 55, 89,...    (A000045)
2,  8,  24,   80,   256,    832,  2688, 8704,...   (A063727, A085449)
3, 18,  81,  405,  1944,   9477, 45927,...         (A122069, A099012)
4, 32, 192, 1280,  8192,  53248,...                         (A099133)
5, 50, 375, 3125, 25000, 203125,...
6, 72, 648, 6480, 62208, 606528,...
...
Columns: A000027, A001105, A117642.
		

Programs

  • PARI
    T(n,k)=n^k*fibonacci(k)
    
  • PARI
    T(n,k)=polcoeff(Ser(1/(1-n*x-n^2*x^2)),k)

Formula

G.f. of n-th row: 1/(1 - n*x - n^2*x^2).
Recurrence: T(n,k) = n*T(n,k-1) + n^2*T(n,k-2), starting n, 2*n^2.

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A015541 Expansion of x/(1 - 5*x - 7*x^2).

Original entry on oeis.org

0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 3, 8, 6, 8, 24, 6, 6, 24, 24, 5, 24, 12, 6, 8, 12, 16, 24, 120, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) + 7*a(n-2).

A015544 Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
  • PARI
    A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
  • Sage
    [lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 8*a(n-2).
G.f.: x/(1 - 5*x - 8*x^2). - M. F. Hasler, Mar 06 2009

Extensions

More precise definition by M. F. Hasler, Mar 06 2009

A122069 a(n) = 3*a(n-1) + 9*a(n-2) for n > 1, with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 18, 81, 405, 1944, 9477, 45927, 223074, 1082565, 5255361, 25509168, 123825753, 601059771, 2917611090, 14162371209, 68745613437, 333698181192, 1619805064509, 7862698824255, 38166342053346, 185263315578333
Offset: 0

Views

Author

Philippe Deléham, Oct 15 2006

Keywords

Crossrefs

Third row of A234357.

Programs

  • GAP
    List([0..25], n-> 3^n*Fibonacci(n+1) ); # G. C. Greubel, Oct 03 2019
  • Magma
    [3^n*Fibonacci(n+1): n in [0..25]]; // G. C. Greubel, Oct 03 2019
    
  • Maple
    with(combinat); seq(3^n*fibonacci(n+1), n=0..25); # G. C. Greubel, Oct 03 2019
  • Mathematica
    Table[3^n*Fibonacci[n+1], {n,0,25}] (* G. C. Greubel, Oct 03 2019 *)
    LinearRecurrence[{3,9},{1,3},30] (* Harvey P. Dale, Apr 28 2020 *)
  • PARI
    vector(26, n, 3^(n-1)*fibonacci(n) ) \\ G. C. Greubel, Oct 03 2019
    
  • Sage
    [lucas_number1(n,3,-9) for n in range(1, 23)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 3^n*Fibonacci(n+1) = 3^n*A000045(n+1).
a(n) = Sum_{k=0..n} 2^k*A016095(n,k).
G.f.: 1/(1-3*x-9*x^2).
Limit_{n->oo} a(n+1)/a(n) = 3*(1+sqrt(5))/2.
a(n) = A099012(n+1). - R. J. Mathar, Aug 02 2008
a(n) = A085504(n) for n >= 2. - Georg Fischer, Nov 03 2018

Extensions

Corrected by T. D. Noe, Nov 07 2006

A099013 a(n) = Sum_{k=0..n} 3^(k-1)*Fibonacci(k).

Original entry on oeis.org

0, 1, 4, 22, 103, 508, 2452, 11929, 57856, 280930, 1363495, 6618856, 32128024, 155953777, 757013548, 3674624638, 17836995847, 86582609284, 420280790476, 2040085854985, 9902784679240, 48069126732586, 233332442310919
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Partial sums of A099012. Binomial transform of A063092 (with leading 0).

Crossrefs

Programs

  • Magma
    I:=[0, 1, 4]; [n le 3 select I[n] else 4*Self(n-1)+6*Self(n-2)-9*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
    
  • Mathematica
    Join[{a=0,b=1},Table[c=3*b+9*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    Table[Sum[3^(k-1) Fibonacci[k],{k,0,n}],{n,0,30}] (* or *) LinearRecurrence[{4,6,-9},{0,1,4},30] (* Harvey P. Dale, Dec 09 2011 *)
    CoefficientList[Series[x/((1-x)(1-3x-9x^2)),{x,0,40}],x] (* Vincenzo Librandi, Jun 25 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/((1-x)*(1 - 3*x - 9*x^2)))) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: x/((1-x)*(1 - 3*x - 9*x^2)).
a(n) = 4*a(n-1) + 6*a(n-2) - 9*a(n-3).
a(n) = 3^(n-1)*Sum_{k=0..n} Fibonacci(n-k)*3^(-k).
a(n) = (3/2 + 3*sqrt(5)/2)^n*(1/22 + 7*sqrt(5)/110) + (1/22 - 7*sqrt(5)/110)*(3/2 - 3*sqrt(5)/2)^n - 1/11.
a(n) = (3^n*A000285(n) - 1)/11, the case m = 3 of Sum_{k=0..n} m^(k-1)*F(k) = (m^n*(m*F(n) + F(n+1)) - 1)/(m^2 + m - 1), F=A000045. - Ehren Metcalfe, Apr 29 2018

Extensions

Sign in second formula corrected by Harvey P. Dale, Dec 09 2011

A099133 4^(n-1)*Fibonacci(n).

Original entry on oeis.org

0, 1, 4, 32, 192, 1280, 8192, 53248, 344064, 2228224, 14417920, 93323264, 603979776, 3909091328, 25300041728, 163745628160, 1059783180288, 6859062771712, 44392781971456, 287316132233216, 1859549040476160, 12035254277636096, 77893801758162944
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Comments

Binomial transform of A099134.
Second binomial transform of x/(1-20x^2), or (0,1,0,20,0,400,0,8000,....).
In general k^(n-1)*Fibonacci(n) has g.f. x/(1-kx-k^2x^2).
The ratio a(n+1)/a(n) converges to 4 times the golden ratio as n approaches infinity. In general, the ratio a(n+1)/a(n) of the sequence which is the solution to the linear recurrence relation a(n) = m*a(n-1)+m^2*a(n-2) with a(0)=0 and a(1) = 1 converges to m times the golden ratio as n approaches infinity where m is a positive integer. - Felix P. Muga II, Mar 10 2014

Examples

			G.f. = x + 4*x^2 + 32*x^3 + 192*x^4 + 1280*x^5 + 8192*x^6 + 53248*x^7 + ...
		

References

  • F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivré Formula, March 2014; Preprint on ResearchGate.

Crossrefs

Cf. A000045, A099012, A085449. Fourth row of A234357.

Programs

Formula

G.f.: x/(1-4*x-16*x^2).
a(n) = 4*a(n-1) + 16*a(n-2).
a(n) = (2+2*sqrt(5))^n/(4*sqrt(5))-(2-sqrt(5))^n/(4*sqrt(5)).
a(-n) = -(-1)^n * a(n) / 16^n for all n in Z. - Michael Somos, Mar 18 2014

A085504 Horadam sequence (0,1,9,3).

Original entry on oeis.org

0, 1, 18, 81, 405, 1944, 9477, 45927, 223074, 1082565, 5255361, 25509168, 123825753, 601059771, 2917611090, 14162371209, 68745613437, 333698181192, 1619805064509, 7862698824255, 38166342053346, 185263315578333, 899287025215113, 4365230915850336
Offset: 0

Views

Author

Ross La Haye, Aug 18 2003

Keywords

Comments

Lim_{n->infinity} a(n)/a(n-1) = (3/2)*(1 + sqrt(5)), which can also be written as phi^2 + 2*phi - 1, phi^3 + phi - 1, phi + sqrt(5) + 1, 3*phi, 3*phi^2 - 3, phi^4 - 2 and lim_{n->infinity} (3/2)*(1 + Lucas(n)/Fibonacci(n)).

Examples

			a(4) = 405 because a(3) = 81, a(2) = 18, s = 3, r = 9 and (3 * 81) + (9 * 18) = 405.
		

Crossrefs

Essentially the same as A122069 and A099012.

Programs

  • Mathematica
    Join[{0,1},LinearRecurrence[{3,9},{18,81},30]] (* or *) CoefficientList[ Series[x (1+15x+18x^2)/(1-3x-9x^2),{x,0,30}],x] (* Harvey P. Dale, Nov 24 2012 *)

Formula

a(n) = s*a(n-1) + r*a(n-2); for n > 3, where a(0) = 0, a(1) = 1, a(2) = 18, a(4) = 81, s = 3, r = 9.
G.f.: x*(1+15*x+18*x^2)/(1-3*x-9*x^2). [Colin Barker, Jun 20 2012]

Extensions

First formula corrected and more terms from Harvey P. Dale, Nov 24 2012

A368157 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + 2*x^2.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 3, 10, 16, 16, 5, 20, 46, 56, 44, 8, 40, 108, 184, 188, 120, 13, 76, 244, 496, 692, 608, 328, 21, 142, 520, 1248, 2088, 2480, 1920, 896, 34, 260, 1074, 2936, 5764, 8256, 8592, 5952, 2448, 55, 470, 2156, 6616, 14764, 24760, 31200, 28992
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1    2
   2    4    6
   3   10   16    16
   5   20   46    56    44
   8   40  108   184   188   120
  13   76  244   496   692   608   328
  21  142  520  1248  2088  2480  1920  896
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 16*x^2 + 16*x^3, so (T(4,k)) = (3,10,16,16), k=0..3.
		

Crossrefs

Cf. A000045 (column 1); A002605, (p(n,n-1)); A030195 (row sums), (p(n,1)); A182228 (alternating row sums), (p(n,-1)); A015545, (p(n,2)); A099012, (p(n,-2)); A087567, (p(n,3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151, A368152, A368153, A368154, A368155, A368156.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 2x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 2*x, u = p(2,x), and v = 1 + 2*x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(5 + 4*x + 13*x^2), b = (1/2)*(2*x + 1 - 1/k), c = (1/2)*(2*x + 1 + 1/k).
Previous Showing 11-20 of 20 results.