A015551
Expansion of x/(1 - 6*x - 5*x^2).
Original entry on oeis.org
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A057089,
A083858,
A085939,
A090017,
A091914,
A099012,
A135030,
A135032,
A180222,
A180226,
A180250.
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
-
a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A234357
Array T(n,k) by antidiagonals: T(n,k) = n^k * Fibonacci(k).
Original entry on oeis.org
1, 2, 2, 3, 8, 3, 4, 18, 24, 5, 5, 32, 81, 80, 8, 6, 50, 192, 405, 256, 13, 7, 72, 375, 1280, 1944, 832, 21, 8, 98, 648, 3125, 8192, 9477, 2688, 34, 9, 128, 1029, 6480, 25000, 53248, 45927, 8704, 55, 10, 162, 1536, 12005, 62208, 203125, 344064, 223074, 28160, 89, 11, 200, 2187
Offset: 0
Array starts:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... (A000045)
2, 8, 24, 80, 256, 832, 2688, 8704,... (A063727, A085449)
3, 18, 81, 405, 1944, 9477, 45927,... (A122069, A099012)
4, 32, 192, 1280, 8192, 53248,... (A099133)
5, 50, 375, 3125, 25000, 203125,...
6, 72, 648, 6480, 62208, 606528,...
...
Columns: A000027, A001105, A117642.
A189800
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0
Sequences of the form a(n) = c*a(n-1) + d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
-
a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A015541
Expansion of x/(1 - 5*x - 7*x^2).
Original entry on oeis.org
0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
Join[{a=0,b=1},Table[c=5*b+7*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{5, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-5*x-7*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,5,-7) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A015544
Lucas sequence U(5,-8): a(n+1) = 5*a(n) + 8*a(n-1), a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 5, 33, 205, 1289, 8085, 50737, 318365, 1997721, 12535525, 78659393, 493581165, 3097180969, 19434554165, 121950218577, 765227526205, 4801739379641, 30130517107845, 189066500576353, 1186376639744525, 7444415203333449, 46713089134623445
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015441,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A015555 (binomial transform).
-
[n le 2 select n-1 else 5*Self(n-1) + 8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
a[n_]:=(MatrixPower[{{1,2},{1,-6}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{5, 8}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
A015544(n)=imag((2+quadgen(57))^n) \\ M. F. Hasler, Mar 06 2009
-
x='x+O('x^30); concat([0], Vec(x/(1 - 5*x - 8*x^2))) \\ G. C. Greubel, Jan 01 2018
-
[lucas_number1(n,5,-8) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A122069
a(n) = 3*a(n-1) + 9*a(n-2) for n > 1, with a(0)=1, a(1)=3.
Original entry on oeis.org
1, 3, 18, 81, 405, 1944, 9477, 45927, 223074, 1082565, 5255361, 25509168, 123825753, 601059771, 2917611090, 14162371209, 68745613437, 333698181192, 1619805064509, 7862698824255, 38166342053346, 185263315578333
Offset: 0
-
List([0..25], n-> 3^n*Fibonacci(n+1) ); # G. C. Greubel, Oct 03 2019
-
[3^n*Fibonacci(n+1): n in [0..25]]; // G. C. Greubel, Oct 03 2019
-
with(combinat); seq(3^n*fibonacci(n+1), n=0..25); # G. C. Greubel, Oct 03 2019
-
Table[3^n*Fibonacci[n+1], {n,0,25}] (* G. C. Greubel, Oct 03 2019 *)
LinearRecurrence[{3,9},{1,3},30] (* Harvey P. Dale, Apr 28 2020 *)
-
vector(26, n, 3^(n-1)*fibonacci(n) ) \\ G. C. Greubel, Oct 03 2019
-
[lucas_number1(n,3,-9) for n in range(1, 23)] # Zerinvary Lajos, Apr 22 2009
A099013
a(n) = Sum_{k=0..n} 3^(k-1)*Fibonacci(k).
Original entry on oeis.org
0, 1, 4, 22, 103, 508, 2452, 11929, 57856, 280930, 1363495, 6618856, 32128024, 155953777, 757013548, 3674624638, 17836995847, 86582609284, 420280790476, 2040085854985, 9902784679240, 48069126732586, 233332442310919
Offset: 0
-
I:=[0, 1, 4]; [n le 3 select I[n] else 4*Self(n-1)+6*Self(n-2)-9*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
-
Join[{a=0,b=1},Table[c=3*b+9*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
Table[Sum[3^(k-1) Fibonacci[k],{k,0,n}],{n,0,30}] (* or *) LinearRecurrence[{4,6,-9},{0,1,4},30] (* Harvey P. Dale, Dec 09 2011 *)
CoefficientList[Series[x/((1-x)(1-3x-9x^2)),{x,0,40}],x] (* Vincenzo Librandi, Jun 25 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/((1-x)*(1 - 3*x - 9*x^2)))) \\ G. C. Greubel, Dec 31 2017
A099133
4^(n-1)*Fibonacci(n).
Original entry on oeis.org
0, 1, 4, 32, 192, 1280, 8192, 53248, 344064, 2228224, 14417920, 93323264, 603979776, 3909091328, 25300041728, 163745628160, 1059783180288, 6859062771712, 44392781971456, 287316132233216, 1859549040476160, 12035254277636096, 77893801758162944
Offset: 0
G.f. = x + 4*x^2 + 32*x^3 + 192*x^4 + 1280*x^5 + 8192*x^6 + 53248*x^7 + ...
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivré Formula, March 2014; Preprint on ResearchGate.
-
Join[{a=0,b=1},Table[c=4*b+16*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2011*)
Table[4^(n-1) Fibonacci[n],{n,0,20}] (* Harvey P. Dale, Aug 22 2012 *)
LinearRecurrence[{4,16},{0,1},30] (* Harvey P. Dale, Aug 22 2012 *)
-
a(n) = 4^(n-1)*fibonacci(n); \\ Michel Marcus, Jan 10 2014
A085504
Horadam sequence (0,1,9,3).
Original entry on oeis.org
0, 1, 18, 81, 405, 1944, 9477, 45927, 223074, 1082565, 5255361, 25509168, 123825753, 601059771, 2917611090, 14162371209, 68745613437, 333698181192, 1619805064509, 7862698824255, 38166342053346, 185263315578333, 899287025215113, 4365230915850336
Offset: 0
a(4) = 405 because a(3) = 81, a(2) = 18, s = 3, r = 9 and (3 * 81) + (9 * 18) = 405.
-
Join[{0,1},LinearRecurrence[{3,9},{18,81},30]] (* or *) CoefficientList[ Series[x (1+15x+18x^2)/(1-3x-9x^2),{x,0,30}],x] (* Harvey P. Dale, Nov 24 2012 *)
First formula corrected and more terms from
Harvey P. Dale, Nov 24 2012
A368157
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + 2*x^2.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 3, 10, 16, 16, 5, 20, 46, 56, 44, 8, 40, 108, 184, 188, 120, 13, 76, 244, 496, 692, 608, 328, 21, 142, 520, 1248, 2088, 2480, 1920, 896, 34, 260, 1074, 2936, 5764, 8256, 8592, 5952, 2448, 55, 470, 2156, 6616, 14764, 24760, 31200, 28992
Offset: 1
First eight rows:
1
1 2
2 4 6
3 10 16 16
5 20 46 56 44
8 40 108 184 188 120
13 76 244 496 692 608 328
21 142 520 1248 2088 2480 1920 896
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 16*x^2 + 16*x^3, so (T(4,k)) = (3,10,16,16), k=0..3.
Cf.
A000045 (column 1);
A002605, (p(n,n-1));
A030195 (row sums), (p(n,1));
A182228 (alternating row sums), (p(n,-1));
A015545, (p(n,2));
A099012, (p(n,-2));
A087567, (p(n,3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151,
A368152,
A368153,
A368154,
A368155,
A368156.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 2x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Comments