A008311
Triangle of expansions of powers of x in terms of Chebyshev polynomials T_n (x).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 3, 4, 1, 10, 5, 1, 10, 15, 6, 1, 35, 21, 7, 1, 35, 56, 28, 8, 1, 126, 84, 36, 9, 1, 126, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 5005, 3003
Offset: 0
Triangle begins:
1;
-, 1;
1, -, 1;
-, 3, -, 1;
3, -, 4, -, 1;
-, 10, -, 5, -, 1;
...
From _Philippe Deléham_, Mar 09 2013: (Start)
cos(x) = 1*cos(x),
2*cos(x)^2 = 1 + cos(2x),
4*cos(x)^3 = 3*cos(x) + cos(3x),
8*cos(x)^4 = 3 + 4*cos(2x) + cos(4x),
16*cos(x)^5 = 10*cos(x) + 5*cos(3x) + cos(5x), etc. (End)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
-
printf("1,") ; for n from 1 to 20 do for j from n mod 2 to n by 2 do if j = 0 then printf("%d,",binomial(n,(n-j)/2)/2) ; else printf("%d,",binomial(n,(n-j)/2)) ; fi ; od ; od ; # R. J. Mathar, May 13 2006
-
row[n_] := If[n == 0, {1}, Table[If[j == 0, Binomial[n, (n - j)/2]/2, Binomial[n, (n - j)/2]], {j, Mod[n, 2], n, 2}]];
Table[row[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 05 2017, after R. J. Mathar *)
A030054
a(n) = binomial(2n+1,n-4).
Original entry on oeis.org
1, 11, 78, 455, 2380, 11628, 54264, 245157, 1081575, 4686825, 20030010, 84672315, 354817320, 1476337800, 6107086800, 25140840660, 103077446706, 421171648758, 1715884494940, 6973199770790, 28277527346376, 114456658306760, 462525733568080, 1866442158555975
Offset: 4
-
seq(binomial(2*n+1,n-4),n=4..50); # Robert Israel, Jun 11 2019
-
Table[Binomial[2n+1,n-4],{n,4,40}] (* Harvey P. Dale, Mar 31 2011 *)
-
vector(30, n, m=n+4; binomial(2*m+1,m-4)) \\ Michel Marcus, Aug 11 2015
A030055
a(n) = binomial(2*n+1, n-5).
Original entry on oeis.org
1, 13, 105, 680, 3876, 20349, 100947, 480700, 2220075, 10015005, 44352165, 193536720, 834451800, 3562467300, 15084504396, 63432274896, 265182149218, 1103068603890, 4568648125690, 18851684897584
Offset: 5
-
List([5..25],n->Binomial(2*n+1,n-5)); # Muniru A Asiru, Oct 24 2018
-
[Binomial(2*n+1, n-5): n in [5..30]]; // G. C. Greubel, Oct 23 2018
-
seq(binomial(2*n+1,n-5),n=5..25); # Muniru A Asiru, Oct 24 2018
-
Table[Binomial[2*n+1, n-5], {n, 5, 30}] (* G. C. Greubel, Oct 23 2018 *)
-
vector(30, n, m=n+4; binomial(2*m+1,m-5)) \\ Michel Marcus, Aug 11 2015
A004311
Binomial coefficient C(2n,n-5).
Original entry on oeis.org
1, 12, 91, 560, 3060, 15504, 74613, 346104, 1562275, 6906900, 30045015, 129024480, 548354040, 2310789600, 9669554100, 40225345056, 166509721602, 686353797976, 2818953098830, 11541847896480, 47129212243960, 191991813933920, 780512175396135, 3167295784216200
Offset: 5
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Seiichi Manyama, Table of n, a(n) for n = 5..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
-
[ Binomial(2*n,n-5): n in [5..150] ]; // Vincenzo Librandi, Apr 13 2011
-
Table[Binomial[2*n, n-5], {n, 5, 30}] (* Amiram Eldar, Aug 27 2022 *)
-
first(m)=vector(m,i,binomial(2*(i+4),i-1)) \\ Anders Hellström, Aug 17 2015
A004312
Binomial coefficient C(2n,n-6).
Original entry on oeis.org
1, 14, 120, 816, 4845, 26334, 134596, 657800, 3108105, 14307150, 64512240, 286097760, 1251677700, 5414950296, 23206929840, 98672427616, 416714805914, 1749695026860, 7309837001104, 30405943383200, 125994627894135, 520341450264090, 2142582442263900, 8799226775309880
Offset: 6
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Seiichi Manyama, Table of n, a(n) for n = 6..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
A004313
a(n) = binomial coefficient C(2n, n-7).
Original entry on oeis.org
1, 16, 153, 1140, 7315, 42504, 230230, 1184040, 5852925, 28048800, 131128140, 600805296, 2707475148, 12033222880, 52860229080, 229911617056, 991493848554, 4244421484512, 18053528883775, 76360380541900, 321387366339585, 1346766106565880, 5621728217559090
Offset: 7
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- Seiichi Manyama, Table of n, a(n) for n = 7..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjic, Two Enumerative Functions
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article 14.3.5.
A286096
Triangle read by rows giving numerators of the Fourier expansion of cos^n(x).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 4, 0, 1, 0, 10, 0, 5, 0, 1, 10, 0, 15, 0, 6, 0, 1, 0, 35, 0, 21, 0, 7, 0, 1, 35, 0, 56, 0, 28, 0, 8, 0, 1, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 126, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1, 0, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1, 462, 0, 792, 0, 495, 0, 220, 0, 66, 0, 12, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
1, 0, 1;
0, 3, 0, 1;
3, 0, 4, 0, 1;
0, 10, 0, 5, 0, 1;
10, 0, 15, 0, 6, 0, 1;
0, 35, 0, 21, 0, 7, 0, 1;
35, 0, 56, 0, 28, 0, 8, 0, 1;
0, 126, 0, 84, 0, 36, 0, 9, 0, 1;
126, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1;
0, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1;
462, 0, 792, 0, 495, 0, 220, 0, 66, 0, 12, 0, 1;
...
-
row[n_] := If[n==0, {1}, 2^(n-1)*TrigReduce[Cos[x]^n] /. Cos[Times[k_., x]] -> x^k // CoefficientList[#, x]&]; Table[row[n], {n, 0, 12}] // Flatten
(* Second program: *)
T[n_, n_] = 1; T[n_, k_] /; k == n-1 || k>n = 0; T[n_, 1] := 2 T[n-1, 0] + T[n-1, 2]; T[n_, 0] := T[n-1, 1]; T[n_, k_] /; 1 < k <= n := T[n, k] = T[n-1, k-1] + T[n-1, k+1]; T[, ] = 0; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 02 2017 *)
Comments