cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A008311 Triangle of expansions of powers of x in terms of Chebyshev polynomials T_n (x).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 4, 1, 10, 5, 1, 10, 15, 6, 1, 35, 21, 7, 1, 35, 56, 28, 8, 1, 126, 84, 36, 9, 1, 126, 210, 120, 45, 10, 1, 462, 330, 165, 55, 11, 1, 462, 792, 495, 220, 66, 12, 1, 1716, 1287, 715, 286, 78, 13, 1, 1716, 3003, 2002, 1001, 364, 91, 14, 1, 6435, 5005, 3003
Offset: 0

Views

Author

Keywords

Comments

This triangle is the right half of Pascal's triangle (A007318), but with each number along the center of Pascal's triangle (except the 1 at the top) divided by 2. - Benjamin Schak (schak(AT)math.upenn.edu), Dec 02 2005
For n>=2 found in A002378, a(n)=A034869(n)/2, for all others a(n)=A034869(n). - R. J. Mathar, May 13 2006

Examples

			Triangle begins:
1;
-, 1;
1, -, 1;
-, 3, -, 1;
3, -, 4, -, 1;
-, 10, -, 5, -, 1;
...
From _Philippe Deléham_, Mar 09 2013: (Start)
cos(x)      = 1*cos(x),
2*cos(x)^2  = 1 + cos(2x),
4*cos(x)^3  = 3*cos(x) + cos(3x),
8*cos(x)^4  = 3 + 4*cos(2x) + cos(4x),
16*cos(x)^5 = 10*cos(x) + 5*cos(3x) + cos(5x), etc. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.

Crossrefs

With zeros: A100257.

Programs

  • Maple
    printf("1,") ; for n from 1 to 20 do for j from n mod 2 to n by 2 do if j = 0 then printf("%d,",binomial(n,(n-j)/2)/2) ; else printf("%d,",binomial(n,(n-j)/2)) ; fi ; od ; od ; # R. J. Mathar, May 13 2006
  • Mathematica
    row[n_] := If[n == 0, {1}, Table[If[j == 0, Binomial[n, (n - j)/2]/2, Binomial[n, (n - j)/2]], {j, Mod[n, 2], n, 2}]];
    Table[row[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 05 2017, after R. J. Mathar *)

Formula

Sum_{k, 0<=k}T(n,k)*cos(kx) = 2^(n-1)*cos(x)^n. - Philippe Deléham, Mar 09 2013

Extensions

Corrected by Philippe Deléham, Nov 12 2005
More terms from R. J. Mathar, May 13 2006

A030054 a(n) = binomial(2n+1,n-4).

Original entry on oeis.org

1, 11, 78, 455, 2380, 11628, 54264, 245157, 1081575, 4686825, 20030010, 84672315, 354817320, 1476337800, 6107086800, 25140840660, 103077446706, 421171648758, 1715884494940, 6973199770790, 28277527346376, 114456658306760, 462525733568080, 1866442158555975
Offset: 4

Views

Author

Keywords

Crossrefs

Diagonal 10 of triangle A100257.
Fifth unsigned column (s=4) of A113187. - Wolfdieter Lang, Oct 19 2012
Cf. A001622.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A002694 (m = 4), A003516 (m = 5), A002696 (m = 6), A030053 - A030056, A004310 - A004318.

Programs

  • Maple
    seq(binomial(2*n+1,n-4),n=4..50); # Robert Israel, Jun 11 2019
  • Mathematica
    Table[Binomial[2n+1,n-4],{n,4,40}]  (* Harvey P. Dale, Mar 31 2011 *)
  • PARI
    vector(30, n, m=n+4; binomial(2*m+1,m-4)) \\ Michel Marcus, Aug 11 2015

Formula

G.f.: x^4*512/((1-sqrt(1-4*x))^9*sqrt(1-4*x))+(-1/x^5+7/x^4-15/x^3+10/x^2-1/x). - Vladimir Kruchinin, Aug 11 2015
From Robert Israel, Jun 11 2019: (Start)
(54 + 36*n)*a(n) + (-438 - 129*n)*a(n + 1) + (714 + 138*n)*a(n + 2) + (-432 - 63*n)*a(n + 3) + (110 + 13*n)*a(n + 4) + (-10 - n)*a(n + 5) = 0.
a(n) ~ 2^(2*n+1)/sqrt(n*Pi). (End)
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=4} 1/a(n) = 317/210 - 2*Pi/(9*sqrt(3)).
Sum_{n>=4} (-1)^n/a(n) = 2908*log(phi)/(5*sqrt(5)) - 8697/70, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([11/2,5],[10],4*x). - Karol A. Penson, Apr 24 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * sqrt(x)*(x^4 - 9*x^3 + 27*x^2 - 30*x + 9)/sqrt((4 - x)).
G.f. x^4 * B(x) * C(x)^9, where B(x) = 1/sqrt(1 - 4*x) is the g.f. of the central binomial coefficients A000984 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A030055 a(n) = binomial(2*n+1, n-5).

Original entry on oeis.org

1, 13, 105, 680, 3876, 20349, 100947, 480700, 2220075, 10015005, 44352165, 193536720, 834451800, 3562467300, 15084504396, 63432274896, 265182149218, 1103068603890, 4568648125690, 18851684897584
Offset: 5

Views

Author

Keywords

Crossrefs

Diagonal 12 of triangle A100257.
Cf. A001622.

Programs

  • GAP
    List([5..25],n->Binomial(2*n+1,n-5)); # Muniru A Asiru, Oct 24 2018
  • Magma
    [Binomial(2*n+1, n-5): n in [5..30]]; // G. C. Greubel, Oct 23 2018
    
  • Maple
    seq(binomial(2*n+1,n-5),n=5..25); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    Table[Binomial[2*n+1, n-5], {n, 5, 30}] (* G. C. Greubel, Oct 23 2018 *)
  • PARI
    vector(30, n, m=n+4; binomial(2*m+1,m-5)) \\ Michel Marcus, Aug 11 2015
    

Formula

G.f.: x^5*2048/((1-sqrt(1-4*x))^11*sqrt(1-4*x))+(-1/x^6+9/x^5-28/x^4+35/x^3-15/x^2+1/x). - Vladimir Kruchinin, Aug 11 2015
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=5} 1/a(n) = 9497/1260 - 32*Pi/(9*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 9392*log(phi)/(5*sqrt(5)) - 508169/1260, where phi is the golden ratio (A001622). (End)

A004311 Binomial coefficient C(2n,n-5).

Original entry on oeis.org

1, 12, 91, 560, 3060, 15504, 74613, 346104, 1562275, 6906900, 30045015, 129024480, 548354040, 2310789600, 9669554100, 40225345056, 166509721602, 686353797976, 2818953098830, 11541847896480, 47129212243960, 191991813933920, 780512175396135, 3167295784216200
Offset: 5

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=5. - Herbert Kociemba, May 24 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Diagonal 11 of triangle A100257.
Cf. A001622.

Programs

  • Magma
    [ Binomial(2*n,n-5): n in [5..150] ]; // Vincenzo Librandi, Apr 13 2011
    
  • Mathematica
    Table[Binomial[2*n, n-5], {n, 5, 30}] (* Amiram Eldar, Aug 27 2022 *)
  • PARI
    first(m)=vector(m,i,binomial(2*(i+4),i-1)) \\ Anders Hellström, Aug 17 2015

Formula

a(n) = Sum{k=0..n} C(n, k)*C(n, k+5). - Hermann Stamm-Wilbrandt, Aug 17 2015
-(n-5)*(n+5)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 24 2018
E.g.f.: BesselI(5,2*x) * exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=5} 1/a(n) = 6169/840 - 31*Pi/(9*sqrt(3)).
Sum_{n>=5} (-1)^(n+1)/a(n) = 5254*log(phi)/(5*sqrt(5)) - 63059/280, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([11/2,6],[11],4*x). - Karol A. Penson, Apr 24 2024

A004312 Binomial coefficient C(2n,n-6).

Original entry on oeis.org

1, 14, 120, 816, 4845, 26334, 134596, 657800, 3108105, 14307150, 64512240, 286097760, 1251677700, 5414950296, 23206929840, 98672427616, 416714805914, 1749695026860, 7309837001104, 30405943383200, 125994627894135, 520341450264090, 2142582442263900, 8799226775309880
Offset: 6

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=6. - Herbert Kociemba, May 24 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Diagonal 13 of triangle A100257.
Cf. A001622.

Programs

Formula

G.f.: ((1/(sqrt(1-4*x)*x)-(1-sqrt(1-4*x))/(2*x^2))*x)/((1-sqrt(1-4*x))/(2*x)-1)^7+6/x-35/x^2+56/x^3-36/x^4+10/x^5-1/x^6. - Vladimir Kruchinin, Aug 11 2015
-(n-6)*(n+6)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jan 24 2018
E.g.f.: BesselI(6,2*x) * exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=6} 1/a(n) = 2*Pi/(9*sqrt(3)) + 1709/2520.
Sum_{n>=6} (-1)^n/a(n) = 16636*log(phi)/(5*sqrt(5)) - 1802033/2520, where phi is the golden ratio (A001622). (End)

A004313 a(n) = binomial coefficient C(2n, n-7).

Original entry on oeis.org

1, 16, 153, 1140, 7315, 42504, 230230, 1184040, 5852925, 28048800, 131128140, 600805296, 2707475148, 12033222880, 52860229080, 229911617056, 991493848554, 4244421484512, 18053528883775, 76360380541900, 321387366339585, 1346766106565880, 5621728217559090
Offset: 7

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Diagonal 15 of triangle A100257.
Cf. A001622.

Programs

Formula

-(n-7)*(n+7)*a(n) + 2*n*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Jan 24 2018
E.g.f.: BesselI(7,2*x)*exp(2*x). - Ilya Gutkovskiy, Jun 27 2019
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=7} 1/a(n) = 41*Pi/(9*sqrt(3)) - 24923/3465.
Sum_{n>=7} (-1)^(n+1)/a(n) = 51094*log(phi)/(5*sqrt(5)) - 7616722/3465, where phi is the golden ratio (A001622). (End)

A286096 Triangle read by rows giving numerators of the Fourier expansion of cos^n(x).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 4, 0, 1, 0, 10, 0, 5, 0, 1, 10, 0, 15, 0, 6, 0, 1, 0, 35, 0, 21, 0, 7, 0, 1, 35, 0, 56, 0, 28, 0, 8, 0, 1, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 126, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1, 0, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1, 462, 0, 792, 0, 495, 0, 220, 0, 66, 0, 12, 0, 1
Offset: 0

Views

Author

Landry Salle, May 02 2017

Keywords

Comments

Doubling the initial term of each line and dropping the 0's transforms this triangle to the right half of Pascal's triangle (A007318).
Row sums are A011782. - Omar E. Pol, May 02 2017

Examples

			Triangle begins:
1;
0,   1;
1,   0,   1;
0,   3,   0,   1;
3,   0,   4,   0,   1;
0,  10,   0,   5,   0,   1;
10,  0,  15,   0,   6,   0,   1;
0,  35,   0,  21,   0,   7,   0,   1;
35,  0,  56,   0,  28,   0,   8,   0,   1;
0, 126,   0,  84,   0,  36,   0,   9,   0,   1;
126, 0, 210,   0, 120,   0,  45,   0,  10,   0,   1;
0, 462,   0, 330,   0, 165,   0,  55,   0,  11,   0,   1;
462, 0, 792,   0, 495,   0, 220,   0,  66,   0,  12,   0,   1;
...
		

Crossrefs

Cf. A007318, A100257 (same sequence with rows reversed).

Programs

  • Mathematica
    row[n_] := If[n==0, {1}, 2^(n-1)*TrigReduce[Cos[x]^n] /. Cos[Times[k_., x]] -> x^k // CoefficientList[#, x]&]; Table[row[n], {n, 0, 12}] // Flatten
    (* Second program: *)
    T[n_, n_] = 1; T[n_, k_] /; k == n-1 || k>n = 0; T[n_, 1] := 2 T[n-1, 0] + T[n-1, 2]; T[n_, 0] := T[n-1, 1]; T[n_, k_] /; 1 < k <= n := T[n, k] = T[n-1, k-1] + T[n-1, k+1]; T[, ] = 0; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 02 2017 *)

Formula

cos^n(x) = (1/2^(n-1)) * Sum_{k=0..n} T(n,k) * cos(k*x).
T(n,k) = T(n-1,k-1) + T(n-1,k+1) if k != 1, T(n,1) = 2*T(n-1,0) + T(n-1,2), T(n,k) = 0 if k < 0 or k > n.
Previous Showing 11-17 of 17 results.