cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A369196 Number of labeled loop-graphs with n vertices and at most as many edges as covered vertices.

Original entry on oeis.org

1, 2, 7, 39, 320, 3584, 51405, 900947, 18661186, 445827942, 12062839691, 364451604095, 12157649050827, 443713171974080, 17583351295466338, 751745326170662049, 34485624653535808340, 1689485711682987916502, 88030098291829749593643, 4860631073631586486397141
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 1 through a(2) = 7 loop-graphs:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

The version counting all vertices is A066383, without loops A369192.
The loopless case is A369193, with case of equality A367862.
The covering case is A369194, connected A369197, minimal case A001862.
The case of equality is A369198, covering case A368597.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs, also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A322661 counts covering loop-graphs, unlabeled A322700.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Length[#]<=Length[Union@@#]&]],{n,0,5}]

Formula

Binomial transform of A369194.

A079491 Numerator of Sum_{k=0..n} binomial(n,k)/2^(k*(k-1)/2).

Original entry on oeis.org

1, 2, 7, 45, 545, 12625, 564929, 49162689, 8361575425, 2789624383745, 1830776926245889, 2368773751202917377, 6053217182280501452801, 30595465072175429929979905, 306239118989330960523869667329, 6076268165073202122463201684865025
Offset: 0

Views

Author

N. J. A. Sloane, Jan 20 2003

Keywords

Comments

Conjecture: Also the number of loop-graphs on n vertices without any non-loop edge having loops at both ends, with formula a(n) = Sum_{k=0..n} binomial(n,k) 2^(k*(n-k) + binomial(k,2)). The unlabeled version is A339832. - Gus Wiseman, Jan 25 2024
The above conjecture is true since (n-k)*k + binomial(n-k,2) = binomial(n,2) - binomial(k,2) and A006125 gives the denominators for this sequence. - Andrew Howroyd, Feb 20 2024

Examples

			1, 2, 7/2, 45/8, 545/64, 12625/1024, 564929/32768, 49162689/2097152, ...
		

References

  • D. L. Kreher and D. R. Stinson, Combinatorial Algorithms, CRC Press, 1999, p. 113.

Crossrefs

Denominators are in A006125.
Cf. A079492.
The unlabeled version is A339832 (loop-graphs interpretation).
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 (shifted left) counts labeled loop-graphs, covering A322661.
A006129 counts labeled covering graphs, connected A001187.

Programs

  • Magma
    [Numerator( (&+[Binomial(n,k)/2^Binomial(k,2): k in [0..n]]) ): n in [0..20]]; // G. C. Greubel, Jun 19 2019
    
  • Maple
    f := n->add(binomial(n,k)/2^(k*(k-1)/2),k=0..n);
  • Mathematica
    Table[Numerator[Sum[Binomial[n,k]/2^Binomial[k,2], {k,0,n}]], {n,0,20}] (* G. C. Greubel, Jun 19 2019 *)
  • PARI
    {a(n)=n!*polcoeff(sum(k=0, n, exp(2^k*x +x*O(x^n))*2^(k*(k-1)/2)*x^k/k!), n)} \\ Paul D. Hanna, Sep 14 2009
    
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*2^(binomial(n,2)-binomial(k,2))) \\ Andrew Howroyd, Feb 20 2024
    
  • Sage
    [numerator( sum(binomial(n,k)/2^binomial(k,2) for k in (0..n)) ) for n in (0..20)] # G. C. Greubel, Jun 19 2019

Formula

E.g.f.: Sum_{n>=0} a(n)*x^n/n! = Sum_{n>=0} exp(2^n*x)*2^(n(n-1)/2)*x^n/n!. - Paul D. Hanna, Sep 14 2009
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(binomial(n,2)-binomial(k,2)). - Andrew Howroyd, Feb 20 2024

A369147 Number of unlabeled loop-graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 7, 52, 411, 4440, 73886, 2128608, 111533208, 10812478194, 1945437194308, 650378721118910, 404749938336301313, 470163239887698682289, 1022592854829028310302180, 4177826139658552046624979658, 32163829440870460348768017832607, 468021728889827507080865185809438918
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 7 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{3},{1,2}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A322700, labeled A322661.
The complement for exactly n edges is A368984, labeled A333331 (maybe).
The labeled complement is A369140, covering case of A368927.
The labeled version is A369142, covering case of A369141.
This is the covering case of A369146.
The complement is counted by A369200, covering case of A369145.
Without loops we have A369202, covering case of A140637.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left).
A002494 counts unlabeled covering graphs, labeled A006129.
A007716 counts non-isomorphic multiset partitions, connected A007718.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,4}]

Formula

First differences of A369146.
a(n) = A322700(n) - A369200(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A118930 E.g.f.: A(x) = exp( Sum_{n>=0} x^(2^n)/2^(2^n-1) ).

Original entry on oeis.org

1, 1, 2, 4, 13, 41, 166, 652, 3494, 18118, 114076, 681176, 5016892, 35377564, 288204008, 2232198256, 21124254181, 191779964597, 2011347229114, 19840403629108, 231266808172181, 2553719667653281, 31743603728993542
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Equals invariant column vector V that satisfies matrix product A100861*V = V, where Bessel numbers A100861(n,k) = n!/[k!(n-2k)!*2^k] give the number of k-matchings of the complete graph K(n).
Equals Lim_{n->inf.} A144299^n, if A144299 is considered an infinite lower triangular matrix. - Gary W. Adamson, Dec 08 2008

Examples

			E.g.f. A(x) = exp( x + x^2/2 + x^4/2^3 + x^8/2^7 + x^16/2^15 +...)
= 1 + 1*x + 2*x^2/2! + 4*x^3/3! + 13*x^4/4! + 41*x^5/5!+ 166*x^6/6!+...
Using coefficients A100861(n,k) = n!/[k!(n-2k)!*2^k]:
a(5) = 1*a(0) +10*a(1) +15*a(2) = 1*1 +10*1 +15*2 = 41.
a(6) = 1*a(0) +15*a(1) +45*a(2) +15*a(3) = 1*1 +15*1 +45*2 +15*4 = 166.
		

Crossrefs

Cf. A100861; variants: A118932, A118935.
Equals row sums of triangle A152685. - Gary W. Adamson, Dec 10 2008
Cf. A144299. - Gary W. Adamson, Dec 08 2008

Programs

  • Maple
    A118930 := proc(n)
        option remember;
        if n<= 1 then
            1 ;
        else
            n!*add(procname(k)/k!/(n-2*k)!/2^k,k=0..n/2) ;
        end if;
    end proc;
    seq(A118930(n),n=0..10) ; # R. J. Mathar, Aug 19 2014
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n, 2k] (2k-1)!! a[k], {k, 0, n/2}]];
    a /@ Range[0, 22] (* Jean-François Alcover, Mar 26 2020 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n\2,n!/(k!*(n-2*k)!*2^k)*a(k)))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Defined by E.G.F.: */
    {a(n)=n!*polcoeff( exp(sum(k=0,#binary(n),x^(2^k)/2^(2^k-1))+x*O(x^n)),n,x)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..[n/2]} n!/[k!*(n-2*k)!*2^k] * a(k), with a(0)=1. a(n) = Sum_{k=0..[n/2]} A100861(n,k)*a(k), with a(0)=1.

A144331 Triangle b(n,k) for n >= 0, 0 <= k <= 2n, read by rows. See A144299 for definition and properties.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 3, 3, 0, 0, 0, 1, 6, 15, 15, 0, 0, 0, 0, 1, 10, 45, 105, 105, 0, 0, 0, 0, 0, 1, 15, 105, 420, 945, 945, 0, 0, 0, 0, 0, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 0, 0, 0, 0, 0, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

David Applegate and N. J. A. Sloane, Dec 07 2008

Keywords

Comments

Although this entry is the last of the versions of the underlying triangle to be added to the OEIS, for some applications it is the most important.
Row n has 2n+1 entries.
A001498 has a b-file.

Examples

			Triangle begins:
  1
  0 1 1
  0 0 1 3 3
  0 0 0 1 6 15 15
  0 0 0 0 1 10 45 105 105
  0 0 0 0 0  1 15 105 420  945  945
  0 0 0 0 0  0  1  21 210 1260 4725 10395 10395
  ...
		

Crossrefs

Row sums give A001515, column sums A000085.
Other versions of this triangle are given in A001497, A001498, A111924 and A100861.
See A144385 for a generalization.

Programs

  • Haskell
    a144331 n k = a144331_tabf !! n !! k
    a144331_row n = a144331_tabf !! n
    a144331_tabf = iterate (\xs ->
      zipWith (+) ([0] ++ xs ++ [0]) $ zipWith (*) (0:[0..]) ([0,0] ++ xs)) [1]
    -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    A144331:= func< n,k | k le n-1 select 0 else Factorial(k)/(2^(k-n)*Factorial(k-n)*Factorial(2*n-k)) >;
    [A144331(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Oct 04 2023
    
  • Mathematica
    Flatten[Table[PadLeft[Table[(n+k)!/(2^k*k!*(n-k)!), {k,0,n}], 2*n+1, 0], {n,0,12}]] (* Jean-François Alcover, Oct 14 2011 *)
  • SageMath
    def A144331(n, k): return 0 if kA144331(n,k) for k in range(2*n+1)] for n in range(13)]) # G. C. Greubel, Oct 04 2023

Formula

E.g.f.: Sum_{n >= 0} Sum_{k = 0..2n} b(n,k) y^n * x^k/k! = exp(x*y*(1 + x/2)).
b(n, k) = 2^(n-k)*k!/((2*n-k)!*(k-n)!).
Sum_{k=0..2*n} b(n, k) = A001515(n).
Sum_{n >= 0} b(n, k) = A000085(k).
From G. C. Greubel, Oct 04 2023: (Start)
T(n, k) = 0 for 0 <= k <= n-1, otherwise T(n, k) = k!/(2^(k-n)*(k-n)!*(2*n-k)!) for n <= k <= 2*n.
Sum_{k=0..2*n} (-1)^k * T(n, k) = A278990(n). (End)

A368836 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on up to n vertices with k loops and n-k non-loops.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 2, 6, 6, 2, 1, 6, 17, 18, 8, 2, 1, 21, 52, 58, 30, 9, 2, 1, 65, 173, 191, 107, 37, 9, 2, 1, 221, 585, 666, 393, 148, 39, 9, 2, 1, 771, 2064, 2383, 1493, 589, 168, 40, 9, 2, 1, 2769, 7520, 8847, 5765, 2418, 718, 176, 40, 9, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2024

Keywords

Comments

Are the row sums the same as column k = 1 (shifted left)?
Yes. When k = 1 there is one loop. Remove the vertex with the loop and add loops to its neighbors. This process is reversible so there is a bijection. - Andrew Howroyd, Jan 13 2024

Examples

			Triangle begins:
   1
   0  1
   0  1  1
   1  2  2  1
   2  6  6  2  1
   6 17 18  8  2  1
  21 52 58 30  9  2  1
Representatives of the loop-graphs counted by row n = 4:
  {12}{13}{14}{23} {1}{12}{13}{14} {1}{2}{12}{13} {1}{2}{3}{12} {1}{2}{3}{4}
  {12}{13}{24}{34} {1}{12}{13}{23} {1}{2}{12}{34} {1}{2}{3}{14}
                   {1}{12}{13}{24} {1}{2}{13}{14}
                   {1}{12}{23}{24} {1}{2}{13}{23}
                   {1}{12}{23}{34} {1}{2}{13}{24}
                   {1}{23}{24}{34} {1}{2}{13}{34}
		

Crossrefs

Column k = 0 is A001434.
Row sums are A368598.
The labeled version is A368928.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k&]]], {n,0,4},{k,0,n}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    row(n) = {my(s=0, A=1+O(x*x^n)); forpart(p=n, s+=permcount(p) * polcoef(edges(p, i->A + x^i)*prod(i=1, #p, A + (x*y)^p[i]), n)); Vecrev(s/n!)} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(28) onwards from Andrew Howroyd, Jan 13 2024

A369200 Number of unlabeled loop-graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 1, 3, 7, 18, 43, 112, 282, 740, 1940, 5182, 13916, 37826, 103391, 284815, 788636, 2195414, 6137025, 17223354, 48495640, 136961527, 387819558, 1100757411, 3130895452, 8922294498, 25470279123, 72823983735, 208515456498, 597824919725, 1716072103910, 4931540188084
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Comments

These are covering loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			Representatives of the a(1) = 1 through a(4) = 18 loop-graphs (loops shown as singletons):
  {{1}}  {{1,2}}      {{1},{2,3}}          {{1,2},{3,4}}
         {{1},{2}}    {{1,2},{1,3}}        {{1},{2},{3,4}}
         {{1},{1,2}}  {{1},{2},{3}}        {{1},{1,2},{3,4}}
                      {{1},{2},{1,3}}      {{1},{2,3},{2,4}}
                      {{1},{1,2},{1,3}}    {{1},{2},{3},{4}}
                      {{1},{1,2},{2,3}}    {{1,2},{1,3},{1,4}}
                      {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{2,4}}
                                           {{1},{2},{3},{1,4}}
                                           {{1},{2},{1,3},{1,4}}
                                           {{1},{2},{1,3},{2,4}}
                                           {{1},{2},{1,3},{3,4}}
                                           {{1},{1,2},{1,3},{1,4}}
                                           {{1},{1,2},{1,3},{2,4}}
                                           {{1},{1,2},{2,3},{2,4}}
                                           {{1},{1,2},{2,3},{3,4}}
                                           {{1},{2,3},{2,4},{3,4}}
                                           {{1,2},{1,3},{1,4},{2,3}}
                                           {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

Without the choice condition we have A322700, labeled A322661.
Without loops we have A368834, covering case of A134964.
For exactly n edges we have A368984, labeled A333331 (maybe).
The labeled version is A369140, covering case of A368927.
The labeled complement is A369142, covering case of A369141.
This is the covering case of A369145.
The complement is counted by A369147, covering case of A369146.
The complement without loops is A369202, covering case of A140637.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left).
A006129 counts covering graphs, unlabeled A002494.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A133686 counts choosable labeled graphs, covering A367869.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

First differences of A369145.
Euler transform of A369289 with A369289(1) = 1. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A176230 Exponential Riordan array [1/sqrt(1-2x), x/(1-2x)].

Original entry on oeis.org

1, 1, 1, 3, 6, 1, 15, 45, 15, 1, 105, 420, 210, 28, 1, 945, 4725, 3150, 630, 45, 1, 10395, 62370, 51975, 13860, 1485, 66, 1, 135135, 945945, 945945, 315315, 45045, 3003, 91, 1, 2027025, 16216200, 18918900, 7567560, 1351350, 120120, 5460, 120, 1, 34459425
Offset: 0

Views

Author

Paul Barry, Apr 12 2010

Keywords

Comments

Row sums are A066223. Reverse of A119743. Inverse is alternating sign version.
Diagonal sums are essentially A025164.
From Tom Copeland, Dec 13 2015: (Start)
See A099174 for relations to the Hermite polynomials and the link for operator relations, including the infinitesimal generator containing A000384.
Row polynomials are 2^n n! Lag(n,-x/2,-1/2), where Lag(n,x,q) is the associated Laguerre polynomial of order q.
The triangles of Bessel numbers entries A122848, A049403, A096713, A104556 contain these polynomials as even or odd rows. Also the aerated version A099174 and A066325. Reversed, these entries are A100861, A144299, A111924.
Divided along the diagonals by the initial element (A001147) of the diagonal, this matrix becomes the even rows of A034839.
(End)
The first few rows appear in expansions related to the Dedekind eta function on pp. 537-538 of the Chan et al. link. - Tom Copeland, Dec 14 2016

Examples

			Triangle begins
        1,
        1,        1,
        3,        6,        1,
       15,       45,       15,       1,
      105,      420,      210,      28,       1,
      945,     4725,     3150,     630,      45,      1,
    10395,    62370,    51975,   13860,    1485,     66,    1,
   135135,   945945,   945945,  315315,   45045,   3003,   91,   1,
  2027025, 16216200, 18918900, 7567560, 1351350, 120120, 5460, 120, 1
Production matrix is
  1,  1,
  2,  5,  1,
  0, 12,  9,  1,
  0,  0, 30, 13,  1,
  0,  0,  0, 56, 17,   1,
  0,  0,  0,  0, 90,  21,   1,
  0,  0,  0,  0,  0, 132,  25,   1,
  0,  0,  0,  0,  0,   0, 182,  29,  1,
  0,  0,  0,  0,  0,   0,   0, 240, 33, 1.
		

Crossrefs

Programs

  • Maple
    ser := n -> series(KummerU(-n, 1/2, x), x, n+1):
    seq(seq((-2)^(n-k)*coeff(ser(n), x, k), k=0..n), n=0..8); # Peter Luschny, Jan 18 2020
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); u[n_, k_] := t[2 n, k + n]; Table[ u[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jan 14 2011 *)

Formula

Number triangle T(n,k) = (2n)!/((2k)!(n-k)!2^(n-k)).
T(n,k) = A122848(2n,k+n). - R. J. Mathar, Jan 14 2011
[x^(1/2)(1+2D)]^2 p(n,x)= p(n+1,x) and [D/(1+2D)]p(n,x)= n p(n-1,x) for the row polynomials of T, with D=d/dx. - Tom Copeland, Dec 26 2012
E.g.f.: exp[t*x/(1-2x)]/(1-2x)^(1/2). - Tom Copeland , Dec 10 2013
The n-th row polynomial R(n,x) is given by the type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} (2*k+1)*(2*k+3)*...*(2*k+1+2*(n-1))*(x/2)^k/k!. Cf. A113278. - Peter Bala, Jun 23 2014
The raising operator in my 2012 formula expanded is R = [x^(1/2)(1+2D)]^2 = 1 + x + (2 + 4x) D + 4x D^2, which in matrix form acting on an o.g.f. (formal power series) is the transpose of the production array below. The linear term x is the diagonal of ones after transposition. The main diagonal comes from (1 + 4xD) x^n = (1 + 4n) x^n. The last diagonal comes from (2 D + 4 x D^2) x^n = (2 + 4 xD) D x^n = n * (2 + 4(n-1)) x^(n-1). - Tom Copeland, Dec 13 2015
T(n, k) = (-2)^(n-k)*[x^k] KummerU(-n, 1/2, x). - Peter Luschny, Jan 18 2020

A100862 Triangle read by rows: T(n,k) is the number of k-matchings of the corona K'(n) of the complete graph K(n) and the complete graph K(1); in other words, K'(n) is the graph constructed from K(n) by adding for each vertex v a new vertex v' and the edge vv'.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 55, 55, 15, 1, 1, 21, 120, 215, 120, 21, 1, 1, 28, 231, 665, 665, 231, 28, 1, 1, 36, 406, 1736, 2835, 1736, 406, 36, 1, 1, 45, 666, 3990, 9891, 9891, 3990, 666, 45, 1, 1, 55, 1035, 8310, 29505, 45297, 29505, 8310, 1035, 55, 1, 1, 66, 1540, 16005, 77715, 173712, 173712, 77715, 16005, 1540, 66, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 08 2005

Keywords

Comments

Row n has n+1 terms.
Row sums yield A005425.

Examples

			T(3,2)=6 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following six 2-matchings: {Aa,BC},{Bb,AC},{Cc,AB},{Aa,Bb},{Aa,Cc} and {Bb,Cc}.
Triangle starts:
  1;
  1,  1;
  1,  3,  1;
  1,  6,  6,  1;
  1, 10, 21, 10,  1;
  1, 15, 55, 55, 15,  1;
		

Crossrefs

Cf. A005425.
Cf. A107102 (matrix inverse).

Programs

  • Maple
    P[0]:=1: for n from 1 to 11 do P[n]:=sort(expand((1+t)*P[n-1]+(n-1)*t*P[n-2])) od: for n from 0 to 11 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # gives the sequence in triangular form
  • Mathematica
    P[0] = 1; P[1] = 1+t; P[n_] := P[n] = (1+t) P[n-1] + (n-1) t P[n-2];
    Table[CoefficientList[P[n], t], {n, 0, 11}] // Flatten (* Jean-François Alcover, Jul 23 2018 *)
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); n!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y),n,x),k,y)} \\ Paul D. Hanna, Jul 18 2005

Formula

T(n,k) = T(n,n-k).
E.g.f.: exp(z+t*z+t*z^2/2).
Row generating polynomial P[n] = [ -i*sqrt(t/2)]^n*H(n, i(1+t)/sqrt(2t)), where H(n, x) is a Hermite polynomial and i=sqrt(-1).
Row generating polynomials P[n] satisfy P[0]=1, P[n]=(1+t)P[n-1]+(n-1)tP[n-2].
From Fabián Pereyra, Jan 05 2022: (Start)
T(n,k) = T(n-1,k) + (n-1)*T(n-2,k-1) + T(n-1,k-1), n>=0, 0<=k<=n; T(0,0) = 1.
T(n,k) = Sum_{j=k..n} C(n,j)*B(j,j-k), where B are the Bessel numbers A100861. (End)

A118931 Triangle, read by rows, where T(n,k) = n!/(k!*(n-3*k)!*3^k) for n>=3*k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 8, 1, 20, 1, 40, 40, 1, 70, 280, 1, 112, 1120, 1, 168, 3360, 2240, 1, 240, 8400, 22400, 1, 330, 18480, 123200, 1, 440, 36960, 492800, 246400, 1, 572, 68640, 1601600, 3203200, 1, 728, 120120, 4484480, 22422400, 1, 910, 200200, 11211200, 112112000, 44844800
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums yield A001470. Given column vector V = A118932, then V is invariant under matrix product T*V = V, or, A118932(n) = Sum_{k=0..n} T(n,k)*A118932(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(3n,n) = (3*n)!/(n!*3^n), 0 otherwise (cf. A100861 formula due to Paul Barry).

Examples

			Triangle T begins:
  1;
  1;
  1;
  1,   2;
  1,   8;
  1,  20;
  1,  40,    40;
  1,  70,   280;
  1, 112,  1120;
  1, 168,  3360,   2240;
  1, 240,  8400,  22400;
  1, 330, 18480, 123200;
  1, 440, 36960, 492800, 246400;
		

Crossrefs

Cf. A001470 (row sums), A118932 (invariant vector).
Variants: A100861, A118933.

Programs

  • Magma
    F:= Factorial;
    [n lt 3*k select 0 else F(n)/(3^k*F(k)*F(n-3*k)): k in [0..Floor(n/3)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Maple
    Trow := n -> seq(n!/(j!*(n - 3*j)!*(3^j)), j = 0..n/3):
    seq(Trow(n), n = 0..14); # Peter Luschny, Jun 06 2021
  • Mathematica
    T[n_,k_]:= If[n<3*k, 0, n!/(3^k*k!*(n-3*k)!)];
    Table[T[n,k], {n,0,20}, {k,0,Floor[n/3]}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    T(n,k)=if(n<3*k,0,n!/(k!*(n-3*k)!*3^k))
    
  • Sage
    f=factorial;
    flatten([[0 if n<3*k else f(n)/(3^k*f(k)*f(n-3*k)) for k in [0..n/3]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^3/3).
Previous Showing 31-40 of 54 results. Next