cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A375839 a(n) = Product_{k=0..n} (k^2 + n).

Original entry on oeis.org

0, 2, 36, 1008, 41600, 2381400, 180457200, 17467670528, 2100621828096, 306960977700000, 53529274174376000, 10973787848179200000, 2611472797582941487104, 713649909809783275801472, 221870902844468552220000000, 77837994361783539267010560000
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^2 + n, {k, 0, n}], {n, 0, 15}]
    Round[Table[Sqrt[n] * Gamma[1 - I*Sqrt[n] + n] * Gamma[1 + I*Sqrt[n] + n] * Sinh[Sqrt[n]*Pi] / Pi, {n, 0, 15}]]

Formula

a(n) ~ n^(2*n + 3/2) / exp(2*n - Pi*n^(1/2) + 1).

A204579 Triangle read by rows: matrix inverse of the central factorial numbers T(2*n, 2*k) (A036969).

Original entry on oeis.org

1, -1, 1, 4, -5, 1, -36, 49, -14, 1, 576, -820, 273, -30, 1, -14400, 21076, -7645, 1023, -55, 1, 518400, -773136, 296296, -44473, 3003, -91, 1, -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1, 1625702400, -2483133696, 1017067024, -173721912, 14739153, -669188, 16422, -204, 1
Offset: 1

Views

Author

M. F. Hasler, Feb 03 2012

Keywords

Comments

This is a signed version of A008955 with rows in reverse order. - Peter Luschny, Feb 04 2012

Examples

			Triangle starts:
  [1]         1;
  [2]        -1,        1;
  [3]         4,       -5,         1;
  [4]       -36,       49,       -14,       1;
  [5]       576,     -820,       273,     -30,       1;
  [6]    -14400,    21076,     -7645,    1023,     -55,    1;
  [7]    518400,  -773136,    296296,  -44473,    3003,  -91,    1;
  [8] -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1;
		

Crossrefs

Cf. A036969, A008955, A008275, A121408, A001044 (column 1), A101686 (alternating row sums), A234324 (central terms).

Programs

  • Maple
    # From Peter Luschny, Feb 29 2024: (Start)
    ogf := n -> local j; z^2*mul(z^2 - j^2, j = 1..n-1):
    Trow := n -> local k; seq(coeff(expand(ogf(n)), z, 2*k), k = 1..n):
    # Alternative:
    f := w -> (w^sqrt(t) + w^(-sqrt(t)))/2: egf := f((x/2 + sqrt(1 + (x/2)^2))^2):
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, k), k = 1..n):  # (End)
    # Assuming offset 0:
    rowpoly := n -> (-1)^n * pochhammer(1 - sqrt(x), n) * pochhammer(1 + sqrt(x), n):
    row := n -> local k; seq(coeff(expand(rowpoly(n)), x, k), k = 0..n):
    seq(print(row(n)), n = 0..7);  # Peter Luschny, Aug 03 2024
  • Mathematica
    rows = 10;
    t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k - j)/((k - j)!*(k + j)!), {j, 1, k}];
    T = Table[t[n, k], {n, 1, rows}, {k, 1, rows}] // Inverse;
    Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018 *)
  • PARI
    select(concat(Vec(matrix(10,10,n,k,T(n,k)/*from A036969*/)~^-1)), x->x)
    
  • Sage
    def A204579(n, k): return (-1)^(n-k)*A008955(n, n-k)
    for n in (0..7): print([A204579(n, k) for k in (0..n)]) # Peter Luschny, Feb 05 2012

Formula

T(n, k) = (-1)^(n-k)*A008955(n, n-k). - Peter Luschny, Feb 05 2012
T(n, k) = Sum_{i=k-n..n-k} (-1)^(n-k+i)*s(n,k+i)*s(n,k-i) = Sum_{i=0..2*k} (-1)^(n+i)*s(n,i)*s(n,2*k-i), where s(n,k) are Stirling numbers of the first kind, A048994. - Mircea Merca, Apr 07 2012
From Peter Bala, Aug 29 2012: (Start)
T(n, k) = T(n-1, k-1) - (n-1)^2*T(n-1, k). (Recurrence equation.)
Let E(x) = cosh(sqrt(2*x)) = Sum_{n >= 0} x^n/{(2*n)!/2^n} and
L(x) = 2*{arcsinh(sqrt(x/2))}^2 = Sum_{n >=1} (-1)^n*(n-1)!^2*x^n/{(2*n)!/2^n}.
L(x) is the compositional inverse of E(x) - 1.
A generating function for the triangle is E(t*L(x)) = 1 + t*x + t*(-1 + t)*x^2/6 + t*(4 - 5*t + t^2)*x^3/90 + ..., where the sequence of denominators [1,1,6,90,...] is given by (2*n)!/2^n. Cf. A008275 with generating function exp(t*log(1+x)).
The e.g.f. is E(t*L(x^2/2)) = cosh(2*sqrt(t)*arcsinh(x/2)) = 1 + t*x^2/2! + t*(t-1)*x^4/4! + t*(t-1)*(t-4)*x^6/6! + .... (End)
From Peter Luschny, Feb 29 2024: (Start)
T(n, k) = [z^(2*k)] z^2*Product_{j=1..n-1} (z^2 - j^2).
T(n, k) = (2*n)! * [t^k] [x^(2*n)] (w^sqrt(t) + w^(-sqrt(t)))/2 where w = (x/2 + sqrt(1 + (x/2)^2))^2. (End)
T(n, k) = [x^k] (-1)^n * Pochhammer(1 - sqrt(x), n) * Pochhammer(1 + sqrt(x), n), assuming offset 0. - Peter Luschny, Aug 03 2024
Integral_{0..oo} x^s / (cosh(x))^(2*n) dx = (2^(2*n - s - 1) * s! * (-1)^(n-1)) / (2*n - 1)!)*Sum_{k=1..n} T(n,k)*DirichletEta(s - 2*k + 2). - Ammar Khatab, Apr 11 2025

Extensions

Typo in data corrected by Peter Luschny, Feb 05 2012

A293290 a(n) = Product_{1 <= j <= k <= n} (k^2 + j^2).

Original entry on oeis.org

1, 2, 80, 187200, 50918400000, 2675955409920000000, 40702283662588674048000000000, 250658664786823821917343252480000000000000, 832906513114759565863066815448211678822400000000000000000, 1919381816160714520414106848157314737202346840876384256000000000000000000000
Offset: 0

Views

Author

Velin Yanev, Oct 05 2017

Keywords

Crossrefs

Suggested by Omar E. Pol from A264596 formula.

Programs

  • Mathematica
    Table[Product[k^2 + j^2, {k, 1, n}, {j, 1, k}], {n, 0, 10}]
  • Sage
    [prod([prod([k^2+j^2 for j in range(1,k+1)]) for k in range(1,n+1)]) for n in range(10)] # Danny Rorabaugh, Oct 16 2017

Formula

a(n) ~ sqrt(Gamma(1/4)) * Pi^(-1/8) * 2^(n^2/2 + n - 1/8) * exp(Pi*n*(n+1)/4 - 3*n^2/2 - n + Pi/24) * n^(n*(n+1) + 1/4). - Vaclav Kotesovec, Feb 26 2019

A051893 a(n) = Sum_{i=1..n-1} i^2*a(i), a(1) = 1.

Original entry on oeis.org

1, 1, 5, 50, 850, 22100, 817700, 40885000, 2657525000, 217917050000, 22009622050000, 2685173890100000, 389350214064500000, 66189536390965000000, 13039338669020105000000, 2946890539198543730000000, 757350868574025738610000000, 219631751886467464196900000000
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999

Keywords

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=1,1,(sinh(Pi)*GAMMA(n-I)*GAMMA(n+I))/(2*Pi)):
    seq(simplify(a(n)), n=1..18); # Peter Luschny, Oct 19 2016
  • Mathematica
    a[n_] := Pochhammer[2-I, n-2]*Pochhammer[2+I, n-2]; a[1] = 1; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 21 2012, after Vladeta Jovovic *)
    Join[{1},FoldList[Times,1,Range[2,20]^2+1]] (* Harvey P. Dale, Jul 04 2013 *)
    Clear[a]; a[1]=1; a[n_]:=a[n]=Sum[i^2*a[i],{i,1,n-1}]; Table[a[n],{n,1,20}] (* Vaclav Kotesovec, Mar 13 2015 *)

Formula

a(n) = Product_{i=2..n-1} (i^2+1), for n>2. - Vladeta Jovovic, Nov 26 2002
From Vaclav Kotesovec, Mar 13 2015: (Start)
For n > 1, a(n) = A101686(n-1)/2.
a(n) ~ (n-1)!^2 * sinh(Pi)/(2*Pi).
(End)
a(n) = (A003703(n)^2 + A009454(n)^2 + A000007(n-1))/2. - Vladimir Reshetnikov, Oct 15 2016
a(n) = sinh(Pi)*Gamma(n-I)*Gamma(n+I)/(2*Pi) for n>1. - Peter Luschny, Oct 19 2016

Extensions

More terms from Harvey P. Dale, Jul 04 2013

A242652 Imaginary part of Product_{k=0..n} (i-k), where i=sqrt(-1).

Original entry on oeis.org

1, -1, 1, 0, -10, 90, -730, 6160, -55900, 549900, -5864300, 67610400, -839594600, 11186357000, -159300557000, 2416003824000, -38894192662000, 662595375078000, -11911522255750000, 225382826562400000, -4477959179352100000, 93217812901913700000, -2029107997508660900000, 46099220630461596000000
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2014

Keywords

Comments

Shifted version of A009454. - R. J. Mathar, May 30 2014

Examples

			Table of n, Product_{k=0..n} (i-k):
   0, i
   1, -1 - i
   2, 3 + i
   3, -10
   4, 40 - 10*i
   5, -190 + 90*i
   6, 1050 - 730*i
   7, -6620 + 6160*i
   8, 46800 - 55900*i
   9, -365300 + 549900*i
  10, 3103100 - 5864300*i
  11, -28269800 + 67610400*i
  12, 271627200 - 839594600*i
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 561-562, Section 148.

Crossrefs

Cf. A009454.
A231531 is the same except for signs.

Programs

  • Maple
    a:= n-> Im(mul(I-j, j=0..n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 03 2021
  • PARI
    a(n) = imag(prod(k=0, n, I-k)); \\ Michel Marcus, Jan 03 2021

A242651 Real part of Product_{k=0..n} (i-k), where i = sqrt(-1).

Original entry on oeis.org

0, -1, 3, -10, 40, -190, 1050, -6620, 46800, -365300, 3103100, -28269800, 271627200, -2691559000, 26495469000, -238131478000, 1394099824000, 15194495654000, -936096296850000, 29697351895900000, -819329864480400000, 21683886333440500000, -570263312237604700000, 15145164178973569000000
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2014

Keywords

Comments

Shifted version of A003703. - R. J. Mathar, May 30 2014

Examples

			Table of n, Product_{k=0..n} (i-k):
   0,         i
   1,        -1 -           i
   2,         3 +           i
   3,       -10
   4,        40 -        10*i
   5,      -190 +        90*i
   6,      1050 -       730*i
   7,     -6620 +      6160*i
   8,     46800 -     55900*i
   9,   -365300 +    549900*i
  10,   3103100 -   5864300*i
  11, -28269800 +  67610400*i
  12, 271627200 - 839594600*i
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 561-562, Section 148.

Crossrefs

A231531 is the same except for signs.

Programs

  • Mathematica
    Table[Re[(I - n)*Pochhammer[1 + I - n, n]], {n, 0, 25}] (* Vaclav Kotesovec, May 23 2021 *)
  • PARI
    a(n) = real(prod(k=0, n, I-k)); \\ Michel Marcus, Jan 03 2021

Formula

a(n) = Sum_{k=0..floor((n+1)/2)} (-1)^k*Stirling1(n+1,2*k). - Ammar Khatab, May 23 2021

A277354 a(n) = Product_{k=1..n} (4*k^2+1).

Original entry on oeis.org

1, 5, 85, 3145, 204425, 20646925, 2993804125, 589779412625, 151573309044625, 49261325439503125, 19753791501240753125, 9580588878101765265625, 5527999782664718558265625, 3742455852864014463945828125, 2937827844498251354197475078125
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Comments

In general, for m>0, Product_{k=1..n} (m*k^2+1) is asymptotic to 2*m^(n+1/2) * n^(2*n+1) * sinh(Pi/sqrt(m)) / exp(2*n).

Crossrefs

Programs

  • Mathematica
    Table[Product[4*k^2+1, {k, 1, n}], {n, 0, 15}]
    Round@Table[2^(2 n + 1) Abs[Gamma[1 + I/2 + n]]^2 Sinh[Pi/2]/Pi, {n, 0, 15}] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • PARI
    a(n) = prod(k=1, n, (4*k^2+1)); \\ Michel Marcus, Oct 11 2016

Formula

a(n) = (-1)^(n+1) * A101928(n+2).
a(n) ~ 2^(2*n+2) * n^(2*n+1) * sinh(Pi/2) / exp(2*n).
a(n) = 2^(2*n+1) * |Gamma(1 + i/2 + n)|^2 * sinh(Pi/2)/Pi. - Vladimir Reshetnikov, Oct 10 2016

A375041 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = n^2 x and t(x) = x+1. See Comments.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 8, 17, 10, 1, 18, 97, 180, 100, 1, 35, 403, 1829, 3160, 1700, 1, 61, 1313, 12307, 50714, 83860, 44200, 1, 98, 3570, 60888, 506073, 1960278, 3147020, 1635400, 1, 148, 8470, 239388, 3550473, 27263928, 101160920, 158986400, 81770000, 1, 213
Offset: 1

Views

Author

Clark Kimberling, Sep 11 2024

Keywords

Comments

See A374848 for the definition of obverse convolution and a guide to related sequences and arrays.

Examples

			First 3 polynomials in s(x)**t(x) are
  1 + x,
  1 + 3 x + 2 x^2,
  1 + 8 x + 17 x^2 + 10 x^3.
First 5 rows of array:
  1    1
  1    3     2
  1    8    17    10
  1   18    97   180   100
  1   35  4034  1829  3160  1700
		

Crossrefs

Cf. A000290, A081489 (column 2), A101686 (T(n,n+1)), A374848, A375042, A375043.

Programs

  • Mathematica
    s[n_] := n^2  x; t[n_] := 1 + x;
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
    Table[Expand[u[n]], {n, 0, 10}]
    Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]]   (* array *)
    Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]]  (* sequence *)

A375043 Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = n^2 x and t(x) = x+2. See Comments.

Original entry on oeis.org

2, 1, 4, 6, 2, 8, 32, 34, 10, 16, 144, 388, 360, 100, 32, 560, 3224, 7316, 6320, 1700, 64, 1952, 21008, 98456, 202856, 167720, 44200, 128, 6272, 114240, 974208, 4048584, 7841112, 6294040, 1635400, 256, 18944, 542080, 7660416, 56807568, 218111424, 404643680
Offset: 1

Views

Author

Clark Kimberling, Sep 14 2024

Keywords

Comments

See A374848 for the definition of obverse convolution and a guide to related sequences and arrays.

Examples

			First 3 polynomials in s(x)**t(x) are
2 + x,
4 + 6 x + 2 x^2,
8 + 32 x + 34 x^2 + 10 x^3.
First 5 rows of array:
 2    1
 4    6     2
 8   32    34    10
16  144   388   360   100
32  560  3224  7316  6320  1700
		

Crossrefs

Cf. A000290, A101686 (T(n,n+1)), A374848, A375041, A375042.

Programs

  • Mathematica
    s[n_] := n^2  x; t[n_] := x + 2;
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
    Table[Expand[u[n]], {n, 0, 10}]
    Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]]   (* array *)
    Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]]  (* sequence *)

A263766 a(n) = Product_{k=1..n} (k^2 - 2).

Original entry on oeis.org

1, -1, -2, -14, -196, -4508, -153272, -7203784, -446634608, -35284134032, -3457845135136, -411483571081184, -58430667093528128, -9757921404619197376, -1893036752496124290944, -422147195806635716880512, -107225387734885472087650048
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 25 2015

Keywords

Examples

			For n = 3, a(3) = (1^2 - 2)*(2^2 - 2)*(3^2 - 2) = -14.
G.f. = 1 - x - 2*x^2 - 14*x^3 - 196*x^4 - 4508*x^5 - 153272*x^6 + ...
		

Crossrefs

Programs

  • Haskell
    a263766 n = a263766_list !! n
    a263766_list = scanl (*) 1 a008865_list
    -- Reinhard Zumkeller, Oct 26 2015
  • Mathematica
    Table[Product[k^2 - 2, {k, 1, n}], {n, 0, 16}]
    Expand@Table[-Pochhammer[Sqrt[2], n+1] Pochhammer[-Sqrt[2], n+1]/2, {n, 0, 16}]
    Join[{1},FoldList[Times,Range[20]^2-2]] (* Harvey P. Dale, Aug 14 2022 *)
  • PARI
    a(n) = prod(k=1, n, k^2-2); \\ Michel Marcus, Oct 25 2015
    

Formula

a(n) = Gamma(1+sqrt(2)+n)*Gamma(1-sqrt(2)+n)*sin(Pi*sqrt(2))/(Pi*sqrt(2)).
a(n) = A263688(n+1)^2-A263687(n+1)^2/2.
a(n) ~ exp(-2*n)*n^(2*n+1)*sqrt(2)*sin(Pi*sqrt(2)).
G.f. for 1/a(n): hypergeom([1],[1-sqrt(2),1+sqrt(2)], x).
E.g.f. for 1/a(n): hypergeom([],[1-sqrt(2),1+sqrt(2)], x).
E.g.f. for a(n)/n!: hypergeom([1-sqrt(2),1+sqrt(2)], [1], x).
Recurrence: a(0) = 1, a(n) = (n^2-2)*a(n-1).
0 = a(n)*(-24*a(n+2) - 15*a(n+3) + a(n+4)) + a(n+1)*(-9*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) if n>=0. - Michael Somos, Oct 30 2015
Previous Showing 11-20 of 30 results. Next