A375839
a(n) = Product_{k=0..n} (k^2 + n).
Original entry on oeis.org
0, 2, 36, 1008, 41600, 2381400, 180457200, 17467670528, 2100621828096, 306960977700000, 53529274174376000, 10973787848179200000, 2611472797582941487104, 713649909809783275801472, 221870902844468552220000000, 77837994361783539267010560000
Offset: 0
-
Table[Product[k^2 + n, {k, 0, n}], {n, 0, 15}]
Round[Table[Sqrt[n] * Gamma[1 - I*Sqrt[n] + n] * Gamma[1 + I*Sqrt[n] + n] * Sinh[Sqrt[n]*Pi] / Pi, {n, 0, 15}]]
A204579
Triangle read by rows: matrix inverse of the central factorial numbers T(2*n, 2*k) (A036969).
Original entry on oeis.org
1, -1, 1, 4, -5, 1, -36, 49, -14, 1, 576, -820, 273, -30, 1, -14400, 21076, -7645, 1023, -55, 1, 518400, -773136, 296296, -44473, 3003, -91, 1, -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1, 1625702400, -2483133696, 1017067024, -173721912, 14739153, -669188, 16422, -204, 1
Offset: 1
Triangle starts:
[1] 1;
[2] -1, 1;
[3] 4, -5, 1;
[4] -36, 49, -14, 1;
[5] 576, -820, 273, -30, 1;
[6] -14400, 21076, -7645, 1023, -55, 1;
[7] 518400, -773136, 296296, -44473, 3003, -91, 1;
[8] -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1;
-
# From Peter Luschny, Feb 29 2024: (Start)
ogf := n -> local j; z^2*mul(z^2 - j^2, j = 1..n-1):
Trow := n -> local k; seq(coeff(expand(ogf(n)), z, 2*k), k = 1..n):
# Alternative:
f := w -> (w^sqrt(t) + w^(-sqrt(t)))/2: egf := f((x/2 + sqrt(1 + (x/2)^2))^2):
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, k), k = 1..n): # (End)
# Assuming offset 0:
rowpoly := n -> (-1)^n * pochhammer(1 - sqrt(x), n) * pochhammer(1 + sqrt(x), n):
row := n -> local k; seq(coeff(expand(rowpoly(n)), x, k), k = 0..n):
seq(print(row(n)), n = 0..7); # Peter Luschny, Aug 03 2024
-
rows = 10;
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k - j)/((k - j)!*(k + j)!), {j, 1, k}];
T = Table[t[n, k], {n, 1, rows}, {k, 1, rows}] // Inverse;
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018 *)
-
select(concat(Vec(matrix(10,10,n,k,T(n,k)/*from A036969*/)~^-1)), x->x)
-
def A204579(n, k): return (-1)^(n-k)*A008955(n, n-k)
for n in (0..7): print([A204579(n, k) for k in (0..n)]) # Peter Luschny, Feb 05 2012
A293290
a(n) = Product_{1 <= j <= k <= n} (k^2 + j^2).
Original entry on oeis.org
1, 2, 80, 187200, 50918400000, 2675955409920000000, 40702283662588674048000000000, 250658664786823821917343252480000000000000, 832906513114759565863066815448211678822400000000000000000, 1919381816160714520414106848157314737202346840876384256000000000000000000000
Offset: 0
-
Table[Product[k^2 + j^2, {k, 1, n}, {j, 1, k}], {n, 0, 10}]
-
[prod([prod([k^2+j^2 for j in range(1,k+1)]) for k in range(1,n+1)]) for n in range(10)] # Danny Rorabaugh, Oct 16 2017
A051893
a(n) = Sum_{i=1..n-1} i^2*a(i), a(1) = 1.
Original entry on oeis.org
1, 1, 5, 50, 850, 22100, 817700, 40885000, 2657525000, 217917050000, 22009622050000, 2685173890100000, 389350214064500000, 66189536390965000000, 13039338669020105000000, 2946890539198543730000000, 757350868574025738610000000, 219631751886467464196900000000
Offset: 1
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 17 1999
-
a := n -> `if`(n=1,1,(sinh(Pi)*GAMMA(n-I)*GAMMA(n+I))/(2*Pi)):
seq(simplify(a(n)), n=1..18); # Peter Luschny, Oct 19 2016
-
a[n_] := Pochhammer[2-I, n-2]*Pochhammer[2+I, n-2]; a[1] = 1; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 21 2012, after Vladeta Jovovic *)
Join[{1},FoldList[Times,1,Range[2,20]^2+1]] (* Harvey P. Dale, Jul 04 2013 *)
Clear[a]; a[1]=1; a[n_]:=a[n]=Sum[i^2*a[i],{i,1,n-1}]; Table[a[n],{n,1,20}] (* Vaclav Kotesovec, Mar 13 2015 *)
A242652
Imaginary part of Product_{k=0..n} (i-k), where i=sqrt(-1).
Original entry on oeis.org
1, -1, 1, 0, -10, 90, -730, 6160, -55900, 549900, -5864300, 67610400, -839594600, 11186357000, -159300557000, 2416003824000, -38894192662000, 662595375078000, -11911522255750000, 225382826562400000, -4477959179352100000, 93217812901913700000, -2029107997508660900000, 46099220630461596000000
Offset: 0
Table of n, Product_{k=0..n} (i-k):
0, i
1, -1 - i
2, 3 + i
3, -10
4, 40 - 10*i
5, -190 + 90*i
6, 1050 - 730*i
7, -6620 + 6160*i
8, 46800 - 55900*i
9, -365300 + 549900*i
10, 3103100 - 5864300*i
11, -28269800 + 67610400*i
12, 271627200 - 839594600*i
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 561-562, Section 148.
A231531 is the same except for signs.
-
a:= n-> Im(mul(I-j, j=0..n)):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 03 2021
-
a(n) = imag(prod(k=0, n, I-k)); \\ Michel Marcus, Jan 03 2021
A242651
Real part of Product_{k=0..n} (i-k), where i = sqrt(-1).
Original entry on oeis.org
0, -1, 3, -10, 40, -190, 1050, -6620, 46800, -365300, 3103100, -28269800, 271627200, -2691559000, 26495469000, -238131478000, 1394099824000, 15194495654000, -936096296850000, 29697351895900000, -819329864480400000, 21683886333440500000, -570263312237604700000, 15145164178973569000000
Offset: 0
Table of n, Product_{k=0..n} (i-k):
0, i
1, -1 - i
2, 3 + i
3, -10
4, 40 - 10*i
5, -190 + 90*i
6, 1050 - 730*i
7, -6620 + 6160*i
8, 46800 - 55900*i
9, -365300 + 549900*i
10, 3103100 - 5864300*i
11, -28269800 + 67610400*i
12, 271627200 - 839594600*i
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, pp. 561-562, Section 148.
A231531 is the same except for signs.
-
Table[Re[(I - n)*Pochhammer[1 + I - n, n]], {n, 0, 25}] (* Vaclav Kotesovec, May 23 2021 *)
-
a(n) = real(prod(k=0, n, I-k)); \\ Michel Marcus, Jan 03 2021
A277354
a(n) = Product_{k=1..n} (4*k^2+1).
Original entry on oeis.org
1, 5, 85, 3145, 204425, 20646925, 2993804125, 589779412625, 151573309044625, 49261325439503125, 19753791501240753125, 9580588878101765265625, 5527999782664718558265625, 3742455852864014463945828125, 2937827844498251354197475078125
Offset: 0
-
Table[Product[4*k^2+1, {k, 1, n}], {n, 0, 15}]
Round@Table[2^(2 n + 1) Abs[Gamma[1 + I/2 + n]]^2 Sinh[Pi/2]/Pi, {n, 0, 15}] (* Vladimir Reshetnikov, Oct 10 2016 *)
-
a(n) = prod(k=1, n, (4*k^2+1)); \\ Michel Marcus, Oct 11 2016
A375041
Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = n^2 x and t(x) = x+1. See Comments.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 8, 17, 10, 1, 18, 97, 180, 100, 1, 35, 403, 1829, 3160, 1700, 1, 61, 1313, 12307, 50714, 83860, 44200, 1, 98, 3570, 60888, 506073, 1960278, 3147020, 1635400, 1, 148, 8470, 239388, 3550473, 27263928, 101160920, 158986400, 81770000, 1, 213
Offset: 1
First 3 polynomials in s(x)**t(x) are
1 + x,
1 + 3 x + 2 x^2,
1 + 8 x + 17 x^2 + 10 x^3.
First 5 rows of array:
1 1
1 3 2
1 8 17 10
1 18 97 180 100
1 35 4034 1829 3160 1700
-
s[n_] := n^2 x; t[n_] := 1 + x;
u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
Table[Expand[u[n]], {n, 0, 10}]
Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *)
Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
A375043
Irregular triangular array T; row n shows the coefficients of the (n-1)-st polynomial in the obverse convolution s(x)**t(x), where s(x) = n^2 x and t(x) = x+2. See Comments.
Original entry on oeis.org
2, 1, 4, 6, 2, 8, 32, 34, 10, 16, 144, 388, 360, 100, 32, 560, 3224, 7316, 6320, 1700, 64, 1952, 21008, 98456, 202856, 167720, 44200, 128, 6272, 114240, 974208, 4048584, 7841112, 6294040, 1635400, 256, 18944, 542080, 7660416, 56807568, 218111424, 404643680
Offset: 1
First 3 polynomials in s(x)**t(x) are
2 + x,
4 + 6 x + 2 x^2,
8 + 32 x + 34 x^2 + 10 x^3.
First 5 rows of array:
2 1
4 6 2
8 32 34 10
16 144 388 360 100
32 560 3224 7316 6320 1700
-
s[n_] := n^2 x; t[n_] := x + 2;
u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
Table[Expand[u[n]], {n, 0, 10}]
Column[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* array *)
Flatten[Table[CoefficientList[Expand[u[n]], x], {n, 0, 10}]] (* sequence *)
A263766
a(n) = Product_{k=1..n} (k^2 - 2).
Original entry on oeis.org
1, -1, -2, -14, -196, -4508, -153272, -7203784, -446634608, -35284134032, -3457845135136, -411483571081184, -58430667093528128, -9757921404619197376, -1893036752496124290944, -422147195806635716880512, -107225387734885472087650048
Offset: 0
For n = 3, a(3) = (1^2 - 2)*(2^2 - 2)*(3^2 - 2) = -14.
G.f. = 1 - x - 2*x^2 - 14*x^3 - 196*x^4 - 4508*x^5 - 153272*x^6 + ...
-
a263766 n = a263766_list !! n
a263766_list = scanl (*) 1 a008865_list
-- Reinhard Zumkeller, Oct 26 2015
-
Table[Product[k^2 - 2, {k, 1, n}], {n, 0, 16}]
Expand@Table[-Pochhammer[Sqrt[2], n+1] Pochhammer[-Sqrt[2], n+1]/2, {n, 0, 16}]
Join[{1},FoldList[Times,Range[20]^2-2]] (* Harvey P. Dale, Aug 14 2022 *)
-
a(n) = prod(k=1, n, k^2-2); \\ Michel Marcus, Oct 25 2015
Comments