cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A102130 Primes of the form 8*n^2 + 4*n + 1.

Original entry on oeis.org

13, 41, 313, 421, 1013, 1201, 1861, 2113, 2381, 3613, 5101, 7321, 9941, 10513, 13613, 14281, 16381, 20201, 21013, 21841, 24421, 30013, 34061, 41761, 47741, 51521, 52813, 54121, 59513, 60901, 82013, 83641, 90313, 97241, 99013, 100801, 106261
Offset: 1

Views

Author

Jonathan Vos Post, Feb 14 2005

Keywords

Crossrefs

Primes in A102083.

Programs

  • Magma
    [ a: n in [0..400] | IsPrime(a) where a is 8*n^2 +4*n + 1]; // Vincenzo Librandi, Nov 17 2010
  • Mathematica
    Select[Table[8n^2+4n+1,{n,0,200}],PrimeQ] (* Harvey P. Dale, Jul 24 2012 *)

A103777 Numbers n such that f[n],f[n+1]and f[n+2] are all primes, where f[n]=8*n^2+4*n+1.

Original entry on oeis.org

15, 50, 80, 110, 230, 245, 425, 570, 635, 645, 710, 925, 1440, 1645, 1710, 1815, 2000, 2465, 2635, 2940, 3040, 3090, 3195, 3525, 4260, 4310, 4400, 4885, 5960, 6145, 7030, 7120, 7250, 8430, 8890, 9445, 10265, 11060, 11150, 11710, 11775, 13020, 13565
Offset: 1

Views

Author

Zak Seidov, Feb 15 2005

Keywords

Comments

All terms are divisible by 5, hence conjecture: there is no such n that f[n],f[n+1],f[n+2] and f[n+3] are primes.

Examples

			15 is a term because f[15]=1861, f[16]=2113 and f[17]=2381 are all primes.
		

Crossrefs

Programs

  • Mathematica
     Flatten[Position[Partition[Table[PrimeQ[8n^2+4n+1],{n,14000}],3,1],{True,True,True}]] (* Harvey P. Dale, Oct 08 2012 *)

A341470 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j,j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 41, 63, 1, 1, 9, 85, 377, 321, 1, 1, 11, 145, 1159, 3649, 1683, 1, 1, 13, 221, 2625, 16641, 36365, 8989, 1, 1, 15, 313, 4991, 50049, 246047, 369305, 48639, 1, 1, 17, 421, 8473, 118721, 982729, 3707509, 3800305, 265729, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2021

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,      1,       1, ...
  1,    3,     5,      7,      9,      11, ...
  1,   13,    41,     85,    145,     221, ...
  1,   63,   377,   1159,   2625,    4991, ...
  1,  321,  3649,  16641,  50049,  118721, ...
  1, 1683, 36365, 246047, 982729, 2908411, ...
		

Crossrefs

Columns k=0..5 give A000012, A001850, A026000, A026001, A331329, A341491.
Rows n=0..2 give A000012, A005408, A102083.
Main diagonal gives A181675(n+1).
Cf. A008288.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(k*n, n-j)*binomial(k*n+j, j));
    
  • PARI
    T(n, k) = sum(j=0, n, 2^j*binomial(n, j)*binomial(k*n, j));

Formula

T(n,k) = A008288(n,k*n).
T(n,k) = Sum_{j=0..n} 2^j * binomial(n,j) * binomial(k*n,j).

A343007 Relative position of the average value between two consecutive partial sums of the Leibniz formula for Pi.

Original entry on oeis.org

6, 13, 26, 41, 62, 85, 114, 145, 182, 221, 266, 313, 366, 421, 482, 545, 614, 685, 762, 841, 926, 1013, 1106, 1201, 1302, 1405, 1514, 1625, 1742, 1861, 1986, 2113, 2246, 2381, 2522, 2665, 2814, 2965, 3122, 3281, 3446, 3613, 3786, 3961, 4142, 4325, 4514, 4705
Offset: 1

Views

Author

Raphael Ranna, Apr 02 2021

Keywords

Comments

Define L(n) to be the n-th partial sum of the Leibniz formula Pi = 4 - 4/3 + 4/5 - 4/7 + ..., i.e., L(n) = Sum_{j=1..n} 4*(-1)^(j+1)/(2*j-1). For every positive integer n, L(n+1) is closer to Pi than L(n) is. If we let V be the average of the two consecutive partial sums L(n) and L(n+1), then the partial sums that lie closest to V are L(a(n)-1) and L(a(n)+1) (one of which is above V, the other below).

Examples

			The first several partial sums are as follows:
  n      L(n)
  -  ------------
  1  4.0000000000
  2  2.6666666...
  3  3.4666666...
  4  2.8952380...
  5  3.3396825...
  6  2.9760461...
  7  3.2837384...
  8  3.0170718...
.
For n=1, the average of the partial sums L(1) and L(2) is V = (L(1) + L(2))/2 = (4 + 2.6666666...)/2 = 3.3333333...; the two partial sums closest to V are L(5)=3.3396825... and L(7)=3.2837384..., and V lies in the interval between them, so a(1)=6.
The formula as it is written works for all data in the sequence, but it needs to be proven that it works for all possible integer values of n.
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (6 + x + x^3)/((1 + x) (1 - x)^3), {x, 0, 48}], x] (* Michael De Vlieger, Apr 05 2021 *)

Formula

a(1) = 6; a(n) = a(n-1) + r(n), where r(n) = A047550(n) = 4*n - (-1)^n.
G.f.: x*(6 + x + x^3)/((1 + x)*(1 - x)^3). - Jinyuan Wang, Apr 03 2021
From Stefano Spezia, Apr 03 2021: (Start)
a(n) = (3 + (-1)^(n+1) + 4*n + 4*n^2)/2.
a(2*n) = A102083(n).
a(2*n-1) = A254527(n). (End)
Previous Showing 11-14 of 14 results.