A218134
Norm of coefficients in the expansion of 1/(1 - 2*x - i*x^2), where i is the imaginary unit.
Original entry on oeis.org
1, 4, 17, 80, 369, 1700, 7841, 36160, 166753, 768996, 3546289, 16354000, 75417809, 347795396, 1603886913, 7396455680, 34109360321, 157298104900, 725393076049, 3345209499600, 15426707209777, 71141522037604, 328074947492321, 1512944453384000, 6977067089461281
Offset: 0
G.f.: A(x) = 1 + 4*x + 17*x^2 + 80*x^3 + 369*x^4 + 1700*x^5 + 7841*x^6 +...
The terms equal the norm of the complex coefficients in the expansion:
1/(1 - 2*x - i*x^2) = 1 + 2*x + (4 + i)*x^2 + (8 + 4*i)*x^3 + (15 + 12*i)*x^4 + (26 + 32*i)*x^5 + (40 + 79*i)*x^6 + (48 + 184*i)*x^7 +...
so that
a(1) = 2^2, a(2) = 4^2 + 1, a(3) = 8^2 + 4^2, a(4) = 15^2 + 12^2, a(5) = 26^2 + 32^2, ...
-
LinearRecurrence[{4, 2, 4, -1}, {1, 4, 17, 80}, 25] (* Jean-François Alcover, Nov 02 2019 *)
-
{a(n)=norm(polcoeff(1/(1-2*x-I*x^2+x*O(x^n)), n))}
for(n=0,31,print1(a(n),", "))
A201837
G.f.: real part of 1/(1 - i*x - i*x^2) where i=sqrt(-1).
Original entry on oeis.org
1, 0, -1, -2, 0, 4, 5, -2, -13, -12, 12, 40, 25, -52, -117, -38, 196, 324, -3, -678, -841, 360, 2200, 2000, -2079, -6760, -4121, 8918, 19720, 6084, -33435, -54442, 1547, 115228, 140772, -63880, -372775, -332892, 359763, 1142322, 678796, -1528956, -3323203
Offset: 0
G.f.: A(x) = 1 - x^2 - 2*x^3 + 4*x^5 + 5*x^6 - 2*x^7 - 13*x^8 - 12*x^9 +...
A201838 gives the imaginary part of coefficients in 1/(1 -i*x - i*x^2) and begins: 0, 1, 1, -1, -3, -2, 4, 9, 3, -15, -25, 0, 52, 65, -27, -169, -155, 158, 520,... in which this sequence equals the negative of the pairwise sums of A201838.
-
Re/@ CoefficientList[Series[1/(1-I*x-I*x^2),{x,0,50}],x] (* Harvey P. Dale, Dec 10 2011 *)
-
{a(n)=real(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)),n))}
-
{a(n)=polcoeff(1/(1 + x^2 + 2*x^3 + x^4 +x*O(x^n)),n)}
A201838
G.f.: imaginary part of 1/(1 - i*x - i*x^2) where i=sqrt(-1).
Original entry on oeis.org
0, 1, 1, -1, -3, -2, 4, 9, 3, -15, -25, 0, 52, 65, -27, -169, -155, 158, 520, 321, -681, -1519, -481, 2560, 4200, -79, -8839, -10881, 4797, 28638, 25804, -27351, -87877, -52895, 116775, 256000, 76892, -436655, -705667, 26871, 1502085, 1821118, -850160
Offset: 0
G.f.: A(x) = x + x^2 - x^3 - 3*x^4 - 2*x^5 + 4*x^6 + 9*x^7 + 3*x^8 - 15*x^9 +...
A201837 gives the real part of coefficients in 1/(1 - i*x - i*x^2) and begins: 1, 0, -1, -2, 0, 4, 5, -2, -13, -12, 12, 40, 25, -52, -117, -38, 196, 324,... in which the pairwise sums generate this sequence.
-
LinearRecurrence[{0,-1,-2,-1},{0,1,1,-1},50] (* Harvey P. Dale, Apr 23 2024 *)
-
{a(n)=imag(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)),n))}
-
{a(n)=polcoeff(x*(1+x)/(1 + x^2 + 2*x^3 + x^4 +x*O(x^n)), n)}
A119749
Number of compositions of n into odd blocks with one element in each block distinguished.
Original entry on oeis.org
1, 1, 4, 7, 15, 32, 65, 137, 284, 591, 1231, 2560, 5329, 11089, 23076, 48023, 99935, 207968, 432785, 900633, 1874236, 3900319, 8116639, 16890880, 35150241, 73148321, 152223044, 316779047, 659223215, 1371856032, 2854858465
Offset: 1
a(3) = 4 since Abc, aBc, abC come from one block of size 3 and A/B/C comes from having three blocks. The capital letters are the distinguished elements.
- R. X. F. Chen and L. W. Shapiro, On Sequences G(n) satisfying G(n)=(d+2)*G(n-1)-G(n-2), J. Int. Seq. 10 (2007) #07.8.1, Theorem 16.
- Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq. (6).
- Y.-h. Guo, n-Color Odd Self-Inverse Compositions, J. Int. Seq. 17 (2014) # 14.10.5, eq. (2).
- B. Hopkins, Spotted tilings and n-color compositions, INTEGERS 12B (2012/2013), #A6.
- Index entries for linear recurrences with constant coefficients, signature (1,2,1,-1).
-
Rest@ CoefficientList[ Series[x(1 + x^2)/(x^4 - x^3 - 2x^2 - x + 1), {x, 0, 50}], x] (* Robert G. Wilson v *)
A218135
Norm of coefficients in the expansion of 1 / (1 - x - 2*I*x^2), where I^2=-1.
Original entry on oeis.org
1, 1, 5, 17, 45, 185, 533, 1921, 6205, 20745, 69541, 229585, 769613, 2552537, 8515125, 28340513, 94357853, 314301865, 1046284741, 3484682865, 11602442605, 38636214649, 128653931093, 428398492865, 1426535718525, 4750159951433, 15817576773605, 52670623373329
Offset: 0
G.f.: A(x) = 1 + 4*x + 17*x^2 + 80*x^3 + 369*x^4 + 1700*x^5 + 7841*x^6 +...
The terms equal the norm of the complex coefficients in the expansion:
1/(1-x-2*I*x^2) = 1 + x + (1 + 2*I)*x^2 + (1 + 4*I)*x^3 + (-3 + 6*I)*x^4 + (-11 + 8*I)*x^5 + (-23 + 2*I)*x^6 + (-39 - 20*I)*x^7 + (-43 - 66*I)*x^8 +...
so that
a(1) = 1, a(2) = 1 + 2^2, a(3) = 1 + 4^2, a(4) = 3^2 + 6^2, a(5) = 11^2 + 8^2, ...
-
{a(n)=norm(polcoeff(1/(1-x-2*I*x^2+x*O(x^n)), n))}
for(n=0,30,print1(a(n),", "))
A218137
Sum of absolute values of real and imaginary parts of the coefficients in the expansion of 1 / (1 - x - I*x^2), where I^2=-1.
Original entry on oeis.org
1, 1, 2, 3, 3, 6, 9, 11, 16, 27, 37, 40, 77, 117, 144, 207, 351, 482, 523, 999, 1522, 1879, 2681, 4560, 6279, 6839, 12960, 19799, 24517, 34722, 59239, 81793, 89424, 168123, 257547, 319880, 449667, 769547, 1065430, 1169193, 2180881, 3350074, 4173363, 5823117, 9996480
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 3*x^4 + 6*x^5 + 9*x^6 + 11*x^7 + 16*x^8 +...
The terms equal the sum of absolute values of real and imaginary parts of the coefficients in the expansion:
1/(1-x-I*x^2) = 1 + x + (1 + I)*x^2 + (1 + 2*I)*x^3 + 3*I*x^4 + (-2 + 4*I)*x^5 + (-5 + 4*I)*x^6 + (-9 + 2*I)*x^7 + (-13 - 3*I)*x^8 + (-15 - 12*I)*x^9 + (-12 - 25*I)*x^10 - 40*I*x^11 + (25 - 52*I)*x^12 + (65 - 52*I)*x^13 + (117 - 27*I)*x^14 + (169 + 38*I)*x^15 + (196 + 155*I)*x^16 + (158 + 324*I)*x^17 + (3 + 520*I)*x^18 + (-321 + 678*I)*x^19 + (-841 + 681*I)*x^20 +...
so that
a(1) = 1, a(2) = 1 + 1, a(3) = 1 + 2, a(4) = 3, a(5) = 2 + 4, ...
-
{a(n)=local(Cn=polcoeff(1/(1-x-I*x^2+x*O(x^n)),n));abs(real(Cn)) + abs(imag(Cn))}
for(n=0,40,print1(a(n),", "))
A171064
G.f.: -x*(x-1)*(1+x)/(1-x-7*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 7, 15, 64, 175, 631, 1905, 6433, 20224, 66529, 212625, 692119, 2226799, 7217728, 23284815, 75343591, 243328225, 786800449, 2542156800, 8217744577, 26556314401, 85835882791, 277405671375, 896595420736, 2897714688751
Offset: 0
-
I:=[0, 1, 1, 7]; [n le 4 select I[n] else Self(n-1) + 7*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 7*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1,7,1,-1},{0,1,1,7},30] (* Harvey P. Dale, Nov 15 2020 *)
A171065
G.f. -x*(x-1)*(1+x)/(1-x-8*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 8, 17, 81, 224, 881, 2737, 9928, 32481, 113761, 380800, 1313441, 4441121, 15215688, 51677297, 176530481, 600723424, 2049428881, 6980069457, 23799693448, 81088954561, 276417142721, 941948403200, 3210574806081
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Hugh Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (1,8,1,-1).
-
I:=[0, 1, 1, 8]; [n le 4 select I[n] else Self(n-1) + 8*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 8*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1,8,1,-1},{0,1,1,8},30] (* Harvey P. Dale, Dec 27 2017 *)
A171066
G.f. -x*(x-1)*(1+x)/(1-x-9*x^2-x^3+x^4).
Original entry on oeis.org
0, 1, 1, 9, 19, 100, 279, 1189, 3781, 14661, 49600, 184141, 641421, 2333629, 8240959, 29700900, 105561739, 378777169, 1350292761, 4835148121, 17260998400, 61748847081, 220582688041, 788748162049, 2818480203099, 10076047502500
Offset: 0
R. J. Mathar, at the request of R. K. Guy, Sep 03 2010
-
I:=[0, 1, 1, 9]; [n le 4 select I[n] else Self(n-1) + 9*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/(1 - x - 9*x^2 - x^3 + x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
A171067
G.f. -x*(x-1)*(1+x)/((x^2+3*x+1)*(x^2-4*x+1)).
Original entry on oeis.org
0, 1, 1, 10, 21, 121, 340, 1561, 5061, 20890, 72721, 285121, 1028160, 3931201, 14425201, 54480250, 201635301, 756931801, 2813339860, 10529812921, 39218508021, 146573045290, 546474598561, 2040893746561, 7612994269440
Offset: 0
R. J. Mathar, at the request of R. K. Guy, Sep 03 2010
-
I:=[0, 1, 1, 10]; [n le 4 select I[n] else Self(n-1) + 10*Self(n-2) + Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
-
CoefficientList[Series[-x*(x - 1)*(1 + x)/((x^2 + 3*x + 1)*(x^2 - 4*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
LinearRecurrence[{1,10,1,-1},{0,1,1,10},30] (* Harvey P. Dale, Dec 24 2017 *)
Comments