cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 574 results. Next

A106864 Primes of the form 2x^2+2xy+3y^2 with x and y nonnegative.

Original entry on oeis.org

2, 3, 7, 43, 47, 83, 103, 107, 163, 167, 223, 263, 283, 347, 367, 383, 443, 467, 487, 503, 523, 547, 607, 643, 683, 743, 787, 823, 827, 863, 883, 887, 947, 967, 983, 1063, 1087, 1123, 1223, 1303, 1307, 1367, 1423, 1427, 1447, 1483, 1487, 1523, 1583
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

See A106865 for all primes represented by this form.
Discriminant=-20.
Union of {2} and primes == 3 or 7 mod 20. - N. J. A. Sloane, Sep 04 2012

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. See Eq. (2.22), p. 33. - N. J. A. Sloane, Sep 04 2012

Crossrefs

Cf. A106865.

Programs

  • Mathematica
    QuadPrimes2[2, 2, 3, 10000] (* see A106856 *)

A106878 Primes of the form 3x^2+xy+3y^2.

Original entry on oeis.org

3, 5, 7, 13, 17, 47, 73, 83, 97, 103, 157, 167, 173, 223, 227, 257, 283, 293, 307, 313, 353, 367, 383, 397, 433, 467, 503, 523, 563, 577, 587, 593, 607, 643, 647, 677, 727, 733, 773, 787, 797, 853, 857, 887, 937, 983, 997, 1013, 1063, 1097, 1123, 1153
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-35.

Crossrefs

Primes in A243179.

Programs

  • Mathematica
    Union[QuadPrimes2[3, 1, 3, 10000], QuadPrimes2[3, -1, 3, 10000]] (* see A106856 *)

A106889 Primes of the form 2x^2 + 5y^2.

Original entry on oeis.org

2, 5, 7, 13, 23, 37, 47, 53, 103, 127, 157, 167, 173, 197, 223, 263, 277, 293, 317, 367, 373, 383, 397, 463, 487, 503, 557, 607, 613, 647, 653, 677, 727, 733, 743, 757, 773, 797, 823, 853, 863, 877, 887, 967, 983, 997, 1013, 1063, 1087, 1093, 1103, 1117
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant = -40.

Crossrefs

Cf. A139827. Primes in A020674.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 5, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\5), if(isprime(t=w+5*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

The primes are congruent to {2, 5, 7, 13, 23, 37} (mod 40). - T. D. Noe, May 02 2008

A106950 Primes of the form x^2 + 18y^2.

Original entry on oeis.org

19, 43, 67, 73, 97, 139, 163, 193, 211, 241, 283, 307, 313, 331, 337, 379, 409, 433, 457, 499, 523, 547, 571, 577, 601, 619, 643, 673, 691, 739, 769, 787, 811, 859, 883, 907, 937, 1009, 1033, 1051, 1123, 1129, 1153, 1171, 1201, 1249, 1291, 1297, 1321
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant = -72.

Programs

  • Magma
    [ p: p in PrimesUpTo(2000) | p mod 24 in {1, 19} ]; // Vincenzo Librandi, Jul 22 2012
  • Mathematica
    QuadPrimes2[1, 0, 18, 10000] (* see A106856 *)
  • PARI
    {a(n)= my(m, c); if(n<1, 0, c=0; m=0; while( cMichael Somos, Aug 19 2006 */
    

Formula

Primes congruent to 1,19 modulo 24. - Michael Somos, Aug 19 2006

A107169 Primes of the form 3x^2 + 20y^2.

Original entry on oeis.org

3, 23, 47, 83, 107, 167, 227, 263, 347, 383, 443, 467, 503, 563, 587, 647, 683, 743, 827, 863, 887, 947, 983, 1103, 1163, 1187, 1223, 1283, 1307, 1367, 1427, 1487, 1523, 1583, 1607, 1667, 1787, 1823, 1847, 1907, 2003, 2027, 2063, 2087, 2207
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -240. See A107132 for more information.
Except for 3, also primes of the forms 2x^2 + 2xy + 23y^2 (A139831) and 8x^2 + 4xy + 23y^2. See A140633. - T. D. Noe, May 19 2008

Crossrefs

Cf. A139827.

Programs

  • Magma
    [3] cat [p: p in PrimesUpTo(3000) | p mod 60 in [23, 47]]; // Vincenzo Librandi, Jul 25 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 20, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([3]),t); forprime(p=23,lim, t=p%60; if(t==23||t==47, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

Except for 3, the primes are congruent to {23, 47} (mod 60). - T. D. Noe, May 02 2008

A139855 Primes of the form 4x^2+4xy+31y^2.

Original entry on oeis.org

31, 79, 151, 199, 271, 439, 631, 751, 919, 991, 1039, 1231, 1279, 1399, 1471, 1759, 1831, 1879, 1951, 1999, 2239, 2311, 2551, 2671, 2719, 2791, 3079, 3271, 3319, 3391, 3511, 3559, 3631, 3919, 4111, 4159, 4231, 4519, 4591, 4639, 4759, 4831
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant = -480. See A139827 for more information.
Also primes of the form 15x^2+16y^2, which has discriminant = -960. - T. D. Noe, May 07 2008
Also primes of the form 16x^2+8xy+31y^2, which has discriminant = -1920. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 120 in {31, 79}]; // Vincenzo Librandi, Jul 29 2012
  • Mathematica
    QuadPrimes2[4, -4, 31, 10000] (* see A106856 *)

Formula

The primes are congruent to {31, 79} (mod 120).

A139857 Primes of the form 8x^2 + 15y^2.

Original entry on oeis.org

23, 47, 167, 263, 383, 503, 647, 743, 863, 887, 983, 1103, 1223, 1367, 1487, 1583, 1607, 1823, 1847, 2063, 2087, 2207, 2423, 2447, 2543, 2663, 2687, 2903, 2927, 3023, 3167, 3407, 3527, 3623, 3767, 3863, 4007, 4127, 4463, 4583, 4703, 4943
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant= = -480. See A139827 for more information.
Also primes of the form 12x^2 + 12xy + 23y^2, which has discriminant = -960. - T. D. Noe, May 07 2008
Also primes of the forms 23x^2 + 22xy + 47y^2 and 23x^2 + 8xy + 32y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 120 in {23, 47}]; // Vincenzo Librandi, Jul 29 2012
    
  • Mathematica
    QuadPrimes2[8, 0, 15, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\8), w=8*x^2; for(y=1, sqrtint((lim-w)\15), if(isprime(t=w+15*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 22 2017

Formula

The primes are congruent to {23, 47} (mod 120).

A139858 Primes of the form 8x^2+8xy+17y^2.

Original entry on oeis.org

17, 113, 137, 233, 257, 353, 593, 617, 857, 953, 977, 1097, 1193, 1217, 1433, 1553, 1697, 1913, 2153, 2273, 2297, 2393, 2417, 2633, 2657, 2753, 2777, 2897, 3137, 3257, 3593, 3617, 3833, 4073, 4217, 4337, 4457, 4673, 4793, 4817, 4937, 5153
Offset: 1

Views

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-480. See A139827 for more information.
Also primes of the form 17x^2+14xy+17y^2, which has discriminant=-960. - T. D. Noe, May 07 2008
Also primes of the forms 17x^2+16xy+32y^2 and 17x^2+6xy+57y^2. See A140633. - T. D. Noe, May 19 2008

Programs

  • Magma
    [ p: p in PrimesUpTo(6000) | p mod 120 in {17, 113}]; // Vincenzo Librandi, Jul 29 2012
  • Mathematica
    QuadPrimes2[8, -8, 17, 10000] (* see A106856 *)

Formula

The primes are congruent to {17, 113} (mod 120).

A033202 Primes of form x^2+93*y^2.

Original entry on oeis.org

97, 109, 157, 193, 349, 373, 397, 421, 541, 577, 661, 733, 769, 853, 877, 937, 997, 1033, 1093, 1117, 1213, 1237, 1249, 1321, 1489, 1597, 1609, 1621, 1657, 1693, 1741, 1777, 1861, 1993, 2017, 2029, 2053, 2113, 2221, 2281, 2341, 2389, 2437, 2521, 2593, 2713, 2797, 2857, 2953
Offset: 1

Views

Author

Keywords

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Cf. A139643.

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | p mod 372 in {1,25,49,97, 109,121,133,157,169,193,205,253,289,349,361}]; // Vincenzo Librandi, Jul 02 2016
    
  • Magma
    [p: p in PrimesUpTo(3000) | NormEquation(93,p) eq true]; // Bruno Berselli, Jul 03 2016
  • Mathematica
    QuadPrimes2[1, 0, 93, 10000] (* see A106856 *)
    Select[Prime@Range[500], MemberQ[{1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361}, Mod[#, 372]] &] (* Vincenzo Librandi, Jul 02 2016 *)

Formula

The primes are congruent to {1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361} (mod 372). - T. D. Noe, Apr 29 2008

A033206 Primes of form x^2+95*y^2.

Original entry on oeis.org

131, 239, 389, 419, 461, 821, 859, 919, 1051, 1109, 1531, 1601, 1879, 1901, 2011, 2399, 2411, 2609, 2699, 2791, 2971, 3011, 3041, 3469, 3541, 3559, 3671, 3709, 4139, 4219, 4261, 4349, 4451, 4679, 4691
Offset: 1

Views

Author

Keywords

Comments

Also primes of the form x^2-xy+24y^2 with x and y nonnegative. - T. D. Noe, May 08 2005

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 95, 10000] (* see A106856 *)
Previous Showing 41-50 of 574 results. Next