cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A110509 Riordan array (1, x(1-2x)).

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 0, -4, 1, 0, 0, 4, -6, 1, 0, 0, 0, 12, -8, 1, 0, 0, 0, -8, 24, -10, 1, 0, 0, 0, 0, -32, 40, -12, 1, 0, 0, 0, 0, 16, -80, 60, -14, 1, 0, 0, 0, 0, 0, 80, -160, 84, -16, 1, 0, 0, 0, 0, 0, -32, 240, -280, 112, -18, 1, 0, 0, 0, 0, 0, 0, -192, 560, -448, 144, -20, 1, 0, 0, 0, 0, 0, 0, 64, -672, 1120, -672, 180, -22, 1
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Inverse is Riordan array (1,xc(2x)) [A110510]. Row sums are A107920(n+1). Diagonal sums are (-1)^n*A052947(n).

Examples

			Rows begin
1;
0,  1;
0, -2,  1;
0,  0, -4,  1;
0,  0,  4, -6,  1;
0,  0,  0, 12, -8,   1;
0,  0,  0, -8, 24, -10, 1;
		

Programs

  • Mathematica
    T[n_, k_] := (-2)^(n - k)*Binomial[k, n - k]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 29 2017 *)
  • PARI
    for(n=0,25, for(k=0,n, print1((-2)^(n-k)*binomial(k, n-k), ", "))) \\ G. C. Greubel, Aug 29 2017

Formula

Number triangle: T(n, k) = (-2)^(n-k)*binomial(k, n-k).
T(n,k) = A109466(n,k)*2^(n-k). - Philippe Deléham, Oct 26 2008

A145978 Expansion of 1/(1-x*(1-8*x)).

Original entry on oeis.org

1, 1, -7, -15, 41, 161, -167, -1455, -119, 11521, 12473, -79695, -179479, 458081, 1893913, -1770735, -16922039, -2756159, 132620153, 154669425, -906291799, -2143647199, 5106687193, 22255864785, -18597632759, -196644551039, -47863488967, 1525292919345
Offset: 0

Views

Author

Philippe Deléham, Oct 26 2008

Keywords

Comments

Row sums of Riordan array (1,1(1-8x)).

Crossrefs

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-1) - 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2018
  • Mathematica
    LinearRecurrence[{1,-8},{1,1},50] (* G. C. Greubel, Jan 29 2016 *)
  • PARI
    Vec(1/(1-x*(1-8*x)) + O(x^40)) \\ Michel Marcus, Jan 29 2016
    
  • Sage
    [lucas_number1(n,1,8) for n in range(1, 27)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = a(n-1) - 8*a(n-2), a(0)=1, a(1)=1.
a(n) = Sum_{k=0..n} A109466(n,k)*8^(n-k).

A154690 Triangle read by rows: T(n, k) = (2^(n-k) + 2^k)*binomial(n,k), 0 <= k <= n.

Original entry on oeis.org

2, 3, 3, 5, 8, 5, 9, 18, 18, 9, 17, 40, 48, 40, 17, 33, 90, 120, 120, 90, 33, 65, 204, 300, 320, 300, 204, 65, 129, 462, 756, 840, 840, 756, 462, 129, 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257, 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 14 2009

Keywords

Comments

From G. C. Greubel, Jan 18 2025: (Start)
A more general triangle of coefficients may be defined by T(n, k, p, q) = (p^(n-k)*q^k + p^k*q^(n-k))*A007318(n, k). When (p, q) = (2, 1) this sequence is obtained.
Some related triangles are:
(p, q) = (1, 1) : 2*A007318(n,k).
(p, q) = (2, 2) : 2*A038208(n,k).
(p, q) = (3, 2) : A154692(n,k).
(p, q) = (3, 3) : 2*A038221(n,k). (End)

Examples

			Triangle begins as:
     2;
     3,    3;
     5,    8,     5;
     9,   18,    18,     9;
    17,   40,    48,    40,    17;
    33,   90,   120,   120,    90,    33;
    65,  204,   300,   320,   300,   204,    65;
   129,  462,   756,   840,   840,   756,   462,   129;
   257, 1040,  1904,  2240,  2240,  2240,  1904,  1040,   257;
   513, 2322,  4752,  6048,  6048,  6048,  6048,  4752,  2322,  513;
  1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025;
		

Crossrefs

Cf. A215149.
Sums include: A008776 (row), A010673 (alternating sign row).
Columns k: A000051 (k=0).
Main diagonal: A059304.

Programs

  • Magma
    A154690:= func< n,k | (2^(n-k)+2^k)*Binomial(n,k) >;
    [A154690(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # R. J. Mathar, Jan 13 2011
  • Mathematica
    T[n_, m_]:= (2^(n-m) + 2^m)*Binomial[n,m];
    Table[T[n,m], {n,0,12}, {m,0,n}]//Flatten
  • Python
    from sage.all import *
    def A154690(n,k): return (pow(2,n-k)+pow(2,k))*binomial(n,k)
    print(flatten([[A154690(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 18 2025

Formula

T(n, k) = (2^(n-k) + 2^k)*A007318(n, k).
Sum_{k=0..n} T(n, k) = A008776(n) = A025192(n+1).
From G. C. Greubel, Jan 18 2025: (Start)
T(n, n-k) = T(n, k) (symmetry).
T(n, 1) = n + A215149(n), n >= 1.
T(2*n-1, n) = 3*A069720(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A010673(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000129(n+1) + A001045(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = n+1 + A107920(n+1). (End)

A078020 Expansion of (1-x)/(1-x+2*x^2).

Original entry on oeis.org

1, 0, -2, -2, 2, 6, 2, -10, -14, 6, 34, 22, -46, -90, 2, 182, 178, -186, -542, -170, 914, 1254, -574, -3082, -1934, 4230, 8098, -362, -16558, -15834, 17282, 48950, 14386, -83514, -112286, 54742, 279314, 169830, -388798, -728458, 49138, 1506054, 1407778, -1604330, -4419886, -1211226, 7628546
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Equals the INVERT transform of [1, -1, -1, 1, 1, -1, -1, 1, 1, ...], i.e., 1 followed by repeats of (-1, -1, 1, 1, ...). - Gary W. Adamson, Sep 16 2008
Pisano period lengths: 1, 1, 8, 1, 24, 8, 21, 2, 24, 24, 10, 8, 168, 21, 24, 2, 144, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • GAP
    a:=[1,0];; for n in [2..50] do a[n]:=a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Jun 29 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+2*x^2) )); // G. C. Greubel, Jun 29 2019
    
  • Mathematica
    LinearRecurrence[{1,-2}, {1,0}, 50] (* or *) CoefficientList[Series[(1 - x)/(1-x+2*x^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 29 2019 *)
  • PARI
    Vec((1-x)/(1-x+2*x^2)+O(x^50)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • Sage
    ((1-x)/(1-x+2*x^2)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019
    

Formula

a(n) = A107920(n+1) - A107920(n). - R. J. Mathar, Mar 14 2011
a(n) = (-1)^n*(A001607(n) + A001607(n-1)). - G. C. Greubel, Jun 29 2019

A146078 Expansion of 1/(1-x*(1-9*x)).

Original entry on oeis.org

1, 1, -8, -17, 55, 208, -287, -2159, 424, 19855, 16039, -162656, -307007, 1156897, 3919960, -6492113, -41771753, 16657264, 392603041, 242687665, -3290739704, -5474928689, 24141728647, 73416086848, -143859470975, -804604252607
Offset: 0

Views

Author

Philippe Deléham, Oct 27 2008

Keywords

Comments

Row sums of Riordan array (1, x(1-9x)).

Crossrefs

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-1) - 9*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2018
  • Mathematica
    LinearRecurrence[{1, -9}, {1, 1}, 100] (* G. C. Greubel, Jan 30 2016 *)
  • PARI
    x='x+O('x^30); Vec(1/(1-x+9*x^2)) \\ G. C. Greubel, Jan 19 2018
    
  • Sage
    [lucas_number1(n,1,9) for n in range(1, 27)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = a(n-1) - 9*a(n-2), a(0)=1, a(1)=1.
a(n) = Sum_{k=0..n} A109466(n,k)*9^(n-k).
From G. C. Greubel, Jan 31 2016: (Start)
G.f.: 1/(1-x+9*x^2).
E.g.f.: exp(x/2)*(cos(sqrt(35)*x/2) + (1/sqrt(35))*sin(sqrt(35)*x/2)). (End)
a(n) = Product_{k=1..n} (1 + 6*cos(k*Pi/(n+1))). - Peter Luschny, Nov 28 2019
a(n) = 3^n * U(n, 1/6), where U(n, x) is the Chebyshev polynomial of the second kind. - Federico Provvedi, Mar 28 2022

A167433 Row sums of the Riordan array (1-4x+4x^2, x(1-2x)) (A167431).

Original entry on oeis.org

1, -3, -1, 5, 7, -3, -17, -11, 23, 45, -1, -91, -89, 93, 271, 85, -457, -627, 287, 1541, 967, -2115, -4049, 181, 8279, 7917, -8641, -24475, -7193, 41757, 56143, -27371, -139657, -84915, 194399, 364229, -24569, -753027, -703889, 802165, 2209943
Offset: 0

Views

Author

Paul Barry, Nov 03 2009

Keywords

Comments

The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.
Variants are A107920 and A001607.

Programs

  • Mathematica
    a[n_] := Sin[n*ArcTan[Sqrt[7]]]; FullSimplify[Join[{1}, Table[- (2^(n/2 + 1)/Sqrt[7])*(2*a[n] + Sqrt[2]*a[n + 1]), {n, 1, 100}]]] (* or *) Join[{1}, LinearRecurrence[{1,-2},{-3,-1},100]] (* G. C. Greubel, Jun 13 2016 *)

Formula

G.f.: (1-4x+4x^2)/(1-x+2x^2).
From G. C. Greubel, Jun 13 2016: (Start)
a(n) = a(n-1) - 2*a(n-2).
a(n) = -(2^((n+2)/2)/sqrt(7))*( 2*sin(n*arctan(sqrt(7))) + sqrt(2)*sin((n+1)*arctan(sqrt(7))) ), n>=1, and a(0)=1. (End)

A105578 a(n+3) = 2a(n+2) - 3a(n+1) + 2a(n); a(0) = 1, a(1) = 1, a(2) = 0.

Original entry on oeis.org

1, 1, 0, -1, 0, 3, 4, -1, -8, -5, 12, 23, 0, -45, -44, 47, 136, 43, -228, -313, 144, 771, 484, -1057, -2024, 91, 4140, 3959, -4320, -12237, -3596, 20879, 28072, -13685, -69828, -42457, 97200, 182115, -12284, -376513, -351944, 401083, 1104972, 302807, -1907136, -2512749, 1301524, 6327023, 3723976
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: ibaseiseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Equals (A107920(n) + 1)/2.

Programs

Formula

a(n) - a(n+1) = A001607(n); a(n+2) - 2a(n+1) + a(n) = - A078020(n).
G.f.: -(x^2-x+1) / ((x-1)*(2*x^2-x+1)). - Colin Barker, Feb 08 2015

A169998 a(0)=1, a(1)=1; thereafter a(n) = -a(n-1) - 2*a(n-2).

Original entry on oeis.org

1, 1, -3, 1, 5, -7, -3, 17, -11, -23, 45, 1, -91, 89, 93, -271, 85, 457, -627, -287, 1541, -967, -2115, 4049, 181, -8279, 7917, 8641, -24475, 7193, 41757, -56143, -27371, 139657, -84915, -194399, 364229, 24569, -753027, 703889, 802165, -2209943, 605613, 3814273, -5025499, -2603047
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2010

Keywords

Comments

Cassels, following Nagell, shows that a(n) = +- 1 only for n = 1, 2, 3, 5, 13.
The sequences A001607, A077020, A107920, A167433, A169998 are all essentially the same except for signs.

References

  • J. W. S. Cassels, Local Fields, Cambridge, 1986, see p. 67.

Programs

  • Maple
    f:=proc(n) option remember; if n <= 1 then 1 else -f(n-1)-2*f(n-2); fi; end;
  • Mathematica
    LinearRecurrence[{-1, -2}, {1, 1}, 46] (* Jean-François Alcover, Feb 23 2024 *)
  • PARI
    a(n)=([0,1;-2,-1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Jun 11 2015

Formula

G.f.: ( 1+2*x ) / ( 1+x+2*x^2 ). - R. J. Mathar, Jul 14 2011

A105577 a(n) = 2*a(n-1) - 3*a(n-2) + 2*a(n-3) with a(0) = 1, a(1) = 5, a(2) = 6.

Original entry on oeis.org

1, 5, 6, -1, -10, -5, 18, 31, -2, -61, -54, 71, 182, 43, -318, -401, 238, 1043, 570, -1513, -2650, 379, 5682, 4927, -6434, -16285, -3414, 29159, 35990, -22325, -94302, -49649, 138958, 238259, -39654, -516169, -436858, 595483, 1469202, 278239, -2660162, -3216637, 2103690, 8536967
Offset: 0

Views

Author

Creighton Dement, Apr 14 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 2lesseq[.5'j + .5'k + .5j' + .5k' + .5'ii' + .5e]

Crossrefs

Equals (1/4) [A107920(n+4) + 2*A107920(n-1) + 3].

Programs

  • Mathematica
    LinearRecurrence[{2,-3,2},{1,5,6},50] (* Harvey P. Dale, Apr 13 2019 *)

Formula

G.f.: (1+3*x-x^2)/((1-x)*(1-x+2*x^2)). - Colin Barker, Mar 26 2012
E.g.f.: exp(x/2)*(21*exp(x/2) - 7*cos(sqrt(7)*x/2) + 15*sqrt(7)*sin(sqrt(7)*x/2))/14. - Stefano Spezia, May 22 2025

A146083 Expansion of 1/(1 - x*(1 - 11*x)).

Original entry on oeis.org

1, 1, -10, -21, 89, 320, -659, -4179, 3070, 49039, 15269, -524160, -692119, 5073641, 12686950, -43123101, -182679551, 291674560, 2301149621, -907270539, -26219916370, -16239940441, 272179139629, 450818484480, -2543152051439
Offset: 0

Views

Author

Philippe Deléham, Oct 27 2008

Keywords

Comments

Row sums of Riordan array (1,x(1-11x)).

Crossrefs

Programs

Formula

a(n) = a(n-1)-11*a(n-2) ; a(0)=1, a(1)=1.
a(n) = Sum_{k=0..n} A109466(n,k)*11^(n-k).
From G. C. Greubel, Jan 31 2016: (Start)
G.f.: 1/(1-x+11*x^2).
E.g.f.: exp(x/2)*(cos(sqrt(43)*x/2) + (1/sqrt(43))*sin(sqrt(43)*x/2)).
(End)
Previous Showing 11-20 of 30 results. Next