cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1.

Original entry on oeis.org

2, 9, 375, 15625
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      9: {2,2}
    375: {2,3,3,3}
  15625: {3,3,3,3,3,3}
		

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325624.

Programs

  • Mathematica
    Select[Range[100000],Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]==1&]

Formula

Contains prime(n)^(n!) for all n > 0, including 191581231380566414401 for n = 4.

A325620 Number of integer partitions of n whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 14, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 28, 31, 33, 34, 36, 39, 41, 43, 45, 49, 52, 54, 57, 61, 65, 68, 71, 76, 80, 84, 88, 93, 98, 103, 107, 113
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
  1: (1)
  2: (1,1)
  3: (1,1,1)
  4: (2,2)
  4: (1,1,1,1)
  5: (2,2,1)
  5: (1,1,1,1,1)
  6: (2,2,1,1)
  6: (1,1,1,1,1,1)
  7: (2,2,1,1,1)
  7: (1,1,1,1,1,1,1)
  8: (2,2,2,2)
  8: (2,2,1,1,1,1)
  8: (1,1,1,1,1,1,1,1)
  9: (2,2,2,2,1)
  9: (2,2,1,1,1,1,1)
  9: (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[1/(#!)]]&]],{n,30}]

A325622 Number of integer partitions of n whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 3, 4, 5, 5, 5, 6, 3, 7, 6, 5, 6, 6, 6, 5, 6, 8, 5, 7, 5, 4, 8, 7, 7, 7, 7, 9, 9, 9, 10, 12, 6, 12, 8, 10, 7, 14, 10, 8, 11, 11, 12, 11, 10, 10, 12, 14, 11, 10, 9, 10, 12, 10, 15, 14, 11, 10
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   4: (2,2)
   5: (5)
   6: (6)
   6: (3,3)
   7: (7)
   8: (8)
   8: (4,4)
   9: (9)
   9: (5,4)
   9: (3,3,3)
  10: (10)
  10: (5,5)
  11: (11)
  11: (4,4,3)
  11: (3,3,3,2)
  12: (12)
  12: (6,6)
  12: (4,4,4)
		

Crossrefs

Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325623.

Programs

  • Maple
    f:= proc(n) nops(select(proc(t) local i; (1/add(1/i!,i=t))::integer end proc, combinat:-partition(n))) end proc:
    map(f, [$1..70]); # Robert Israel, May 09 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[1/(#!)]]&]],{n,30}]
  • PARI
    a(n) = my(c=0); forpart(v=n, if(numerator(sum(i=1, #v, 1/v[i]!))==1, c++)); c; \\ Jinyuan Wang, Feb 25 2025

Extensions

a(61)-a(70) from Robert Israel, May 09 2024
a(71)-a(80) from Jinyuan Wang, Feb 25 2025

A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A325621 Heinz numbers of integer partitions whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 81, 128, 144, 162, 256, 288, 324, 375, 512, 576, 648, 729, 750, 1024, 1152, 1296, 1458, 1500, 2048, 2304, 2592, 2916, 3000, 3375, 4096, 4608, 5184, 5832, 6000, 6561, 6750, 8192, 9216, 10368, 11664, 12000, 13122, 13500
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
      9: {2,2}
     16: {1,1,1,1}
     18: {1,2,2}
     32: {1,1,1,1,1}
     36: {1,1,2,2}
     64: {1,1,1,1,1,1}
     72: {1,1,1,2,2}
     81: {2,2,2,2}
    128: {1,1,1,1,1,1,1}
    144: {1,1,1,1,2,2}
    162: {1,2,2,2,2}
    256: {1,1,1,1,1,1,1,1}
    288: {1,1,1,1,1,2,2}
    324: {1,1,2,2,2,2}
    375: {2,3,3,3}
    512: {1,1,1,1,1,1,1,1,1}
		

Crossrefs

Reciprocal factorial sum: A002966, A058360, A316856, A325619, A325620, A325623.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A325624 a(n) = prime(n)^(n!).

Original entry on oeis.org

2, 9, 15625, 191581231380566414401, 92709068817830061978520606494193845859707401497097037749844778027824097442147966967457359038488841338006006032592594389655201
Offset: 1

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A subsequence of A325619 (numbers whose prime indices have reciprocal factorial sum equal to 1).

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325619.

Programs

  • Mathematica
    Table[Prime[n]^n!,{n,5}]

A336618 Maximum divisor of n! with equal prime multiplicities.

Original entry on oeis.org

1, 1, 2, 6, 8, 30, 36, 210, 210, 1296, 1296, 2310, 7776, 30030, 44100, 46656, 46656, 510510, 1679616, 9699690, 9699690, 10077696, 10077696, 223092870, 223092870, 729000000, 901800900, 13060694016, 13060694016, 13060694016, 78364164096, 200560490130
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2020

Keywords

Comments

A number has equal prime multiplicities iff it is a power of a squarefree number. We call such numbers uniform, so a(n) is the maximum uniform divisor of n!.

Examples

			The sequence of terms together with their prime signatures begins:
       1: ()
       1: ()
       2: (1)
       6: (1,1)
       8: (3)
      30: (1,1,1)
      36: (2,2)
     210: (1,1,1,1)
     210: (1,1,1,1)
    1296: (4,4)
    1296: (4,4)
    2310: (1,1,1,1,1)
    7776: (5,5)
   30030: (1,1,1,1,1,1)
   44100: (2,2,2,2)
		

Crossrefs

A327526 is the non-factorial generalization, with quotient A327528.
A336415 counts these divisors.
A336616 is the version for distinct prime multiplicities.
A336619 is the quotient n!/a(n).
A047966 counts uniform partitions.
A071625 counts distinct prime multiplicities.
A072774 lists uniform numbers.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A319269 counts uniform factorizations.
A327524 counts factorizations of uniform numbers into uniform numbers.
A327527 counts uniform divisors.

Programs

  • Mathematica
    Table[Max@@Select[Divisors[n!],SameQ@@Last/@FactorInteger[#]&],{n,0,15}]

Formula

a(n) = A327526(n!).

A301593 n can be represented the sum of a(n) distinct factorials. (If there is no such representation, a(n) = 0.)

Original entry on oeis.org

1, 1, 2, 0, 0, 1, 2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 0, 0, 2, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2018

Keywords

Examples

			n |                        | a(n)
--+------------------------+-----
1 | 1!                     |  1
2 | 2!                     |  1
3 | 1! + 2!                |  2
6 | 3!                     |  1
7 | 3! + 1!                |  2
8 | 3! + 2!                |  2
9 | 3! + 2! + 1!           |  3
		

Crossrefs

Formula

a(n!) = 1, a(n!+1) = 2.

A321682 Numbers with distinct digits in factorial base.

Original entry on oeis.org

0, 1, 2, 4, 5, 10, 13, 14, 19, 20, 22, 23, 46, 67, 68, 77, 82, 85, 86, 101, 106, 109, 110, 115, 116, 118, 119, 238, 355, 356, 461, 466, 469, 470, 503, 526, 547, 548, 557, 562, 565, 566, 623, 646, 667, 668, 677, 682, 685, 686, 701, 706, 709, 710, 715, 716, 718
Offset: 1

Views

Author

Rémy Sigrist, Nov 16 2018

Keywords

Comments

This sequence is a variant of A010784; however here we have infinitely many terms (for example all the terms of A033312 belong to this sequence).

Examples

			The first terms, alongside the corresponding factorial base representations, are:
  n   a(n)  fac(a(n))
  --  ----  ---------
   1     0        (0)
   2     1        (1)
   3     2      (1,0)
   4     4      (2,0)
   5     5      (2,1)
   6    10    (1,2,0)
   7    13    (2,0,1)
   8    14    (2,1,0)
   9    19    (3,0,1)
  10    20    (3,1,0)
  11    22    (3,2,0)
  12    23    (3,2,1)
  13    46  (1,3,2,0)
  14    67  (2,3,0,1)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) local r; `if`(n (l-> is(nops(l)=nops({l[]})))(b(n, 2)):
    select(t, [$0..1000])[];  # Alois P. Heinz, Nov 16 2018
  • Mathematica
    q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; UnsameQ @@ s]; Select[Range[0, 720], q] (* Amiram Eldar, Feb 21 2024 *)
  • PARI
    is(n) = my (s=0); for (k=2, oo, if (n==0, return (1)); my (d=n%k); if (bittest(s,d), return (0), s+=2^d; n\=k))

A325704 If n = prime(i_1)^j_1 * ... * prime(i_k)^j_k, then a(n) is the numerator of the reciprocal factorial sum j_1/i_1! + ... + j_k/i_k!.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 1, 7, 1, 5, 1, 25, 2, 4, 1, 2, 1, 13, 13, 121, 1, 7, 1, 721, 3, 49, 1, 5, 1, 5, 61, 5041, 5, 3, 1, 40321, 361, 19, 1, 37, 1, 241, 7, 362881, 1, 9, 1, 4, 2521, 1441, 1, 5, 7, 73, 20161, 3628801, 1, 8, 1, 39916801, 25, 6, 121, 181, 1
Offset: 1

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

Alternatively, if n = prime(i_1) * ... * prime(i_k), then a(n) is the numerator of 1/i_1! + ... + 1/i_k!.

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>k/PrimePi[p]!]],{n,100}]//Numerator
  • PARI
    A325704(n) = { my(f=factor(n)); numerator(sum(i=1,#f~,f[i, 2]/(primepi(f[i, 1])!))); }; \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A318573(A325709(n)).
Previous Showing 11-20 of 44 results. Next