cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A131067 Triangle read by rows: T(n,k) = 7*binomial(n,k) - 6 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 36, 22, 1, 1, 29, 64, 64, 29, 1, 1, 36, 99, 134, 99, 36, 1, 1, 43, 141, 239, 239, 141, 43, 1, 1, 50, 190, 386, 484, 386, 190, 50, 1, 1, 57, 246, 582, 876, 876, 582, 246, 57, 1, 1, 64, 309, 834, 1464, 1758, 1464, 834, 309, 64, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131068: (1, 2, 10, 32, 82, 188, 406, ...), the binomial transform of (1, 1, 7, 7, 7, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  8,  1;
  1, 15, 15,  1;
  1, 22, 36, 22,  1;
  1, 29, 64, 64, 29, 1;
  ...
		

Crossrefs

Sequence m*binomial(n,k) - (m-1): A007318 (m=1), A109128 (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), this sequence (m=7), A131068 (m=8).

Programs

  • Magma
    [7*Binomial(n, k) -6: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 7*binomial(n, k)-6 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[7*Binomial[n, k] -6, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[7*binomial(n, k) -6 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.: G(t,z) = (1-z-t*z+7*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007

Extensions

More terms from Emeric Deutsch, Jun 20 2007

A123203 a(n) = 2^(n+1) - 3*n.

Original entry on oeis.org

1, 2, 7, 20, 49, 110, 235, 488, 997, 2018, 4063, 8156, 16345, 32726, 65491, 131024, 262093, 524234, 1048519, 2097092, 4194241, 8388542, 16777147, 33554360, 67108789, 134217650, 268435375, 536870828, 1073741737, 2147483558
Offset: 1

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

An elephant sequence, see A175654. For the corner squares just one A[5] vector, with decimal value 186, leads to this sequence. For the central square this vector leads to the companion sequence A036563. - Johannes W. Meijer, Aug 15 2010

Examples

			a(4) = 20, row sums of 4th row of triangle A131062: (1, 9, 9, 1).
a(4) = 20 = (1, 3, 3, 1) dot (1, 1, 4, 4) = (1 + 3 + 12 + 4).
		

Crossrefs

Programs

Formula

Binomial transform of [1, 1, 4, 4, 4, ...].
Equals row sums of triangle A131061.
From Johannes W. Meijer, Aug 15 2010; corrected by Colin Barker, Jul 28 2012: (Start)
a(n) = 2^(1+n) - 3*n.
a(n) = 3*A000295(n-1) + A000079(n-1).
(End)
G.f.: x*(1 - 2*x + 4*x^2)/((1-x)^2*(1-2*x)). - Colin Barker, Jul 28 2012
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Colin Barker, Jul 29 2012
E.g.f.: 2*exp(2*x) - 3*x*exp(x) - 2. - G. C. Greubel, Sep 14 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 15 2008
Title changed by G. C. Greubel, Sep 14 2024

A131064 Binomial transform of [1, 1, 5, 5, 5, ...].

Original entry on oeis.org

1, 2, 8, 24, 60, 136, 292, 608, 1244, 2520, 5076, 10192, 20428, 40904, 81860, 163776, 327612, 655288, 1310644, 2621360, 5242796, 10485672, 20971428, 41942944, 83885980, 167772056, 335544212, 671088528, 1342177164, 2684354440
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums of triangle A131063. - Emeric Deutsch, Jun 20 2007

Examples

			a(3) = 24 = sum of row 4 terms of A131063: (1 + 11 + 11 + 1).
a(3) = 24 = (1, 3, 3, 1) dot (1, 1, 5, 5).
		

Crossrefs

Programs

  • GAP
    Print(List([0..30],n->5*2^n-4*n-4)); # Muniru A Asiru, Feb 21 2019
    
  • Magma
    I:=[1, 2, 8]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2) + 2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 05 2012
    
  • Maple
    a := proc (n) options operator, arrow; 5*2^n-4*n-4 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
  • Mathematica
    CoefficientList[Series[(1-2x+5x^2)/((1-2x)(1-x)^2),{x,0,40}],x] (* Vincenzo Librandi, Jul 05 2012 *)
    LinearRecurrence[{4,-5,2},{1,2,8},30] (* Harvey P. Dale, Dec 29 2014 *)
  • Sage
    [5*2^n -4*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020

Formula

From Emeric Deutsch, Jun 20 2007: (Start)
a(n) = 5*2^n - 4*(n + 1).
G.f.: (1-2*x+5*x^2)/((1-2*x)*(1-x)^2). (End)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Vincenzo Librandi, Jul 05 2012
E.g.f.: 5*exp(2*x) - 4*(1+x)*exp(x). - G. C. Greubel, Mar 12 2020

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007

A131066 Binomial transform of [1, 1, 6, 6, 6, ...].

Original entry on oeis.org

1, 2, 9, 28, 71, 162, 349, 728, 1491, 3022, 6089, 12228, 24511, 49082, 98229, 196528, 393131, 786342, 1572769, 3145628, 6291351, 12582802, 25165709, 50331528, 100663171, 201326462, 402653049, 805306228, 1610612591, 3221225322
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums of triangle A131065. - Emeric Deutsch, Jun 20 2007

Examples

			a(3) = 28 = sum of row 4 of triangle A131065: (1 + 13 + 13 + 1).
a(3) = 28 = (1, 3, 3, 1) dot (1, 1, 6, 6) = (1 + 3 + 18 + 6).
		

Crossrefs

Programs

  • GAP
    Print(List([0..30],n->6*2^n-5*n-5)); # Muniru A Asiru, Feb 21 2019
    
  • Magma
    [6*2^n -5*(n+1): n in [0..30]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    a := proc (n) options operator, arrow; 6*2^n-5*n-5 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[6*2^n -5*(n+1), {n,0,30}] (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [6*2^n -5*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020

Formula

From Emeric Deutsch, Jun 20 2007: (Start)
a(n) = 6*2^n - 5*(n + 1).
G.f.: (1 - 2*x + 6*x^2)/((1-2*x)*(1-x)^2). (End)
E.g.f.: 6*exp(2*x) - 5*(1 + x)*exp(x). - G. C. Greubel, Mar 12 2020
a(n) = 2*a(n - 1) + 5*n - 5. - Kritsada Moomuang, Jul 03 2020
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Wesley Ivan Hurt, Jul 10 2020

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007

A168625 Triangle T(n,k) = 8*binomial(n,k) - 7 with columns 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 41, 25, 1, 1, 33, 73, 73, 33, 1, 1, 41, 113, 153, 113, 41, 1, 1, 49, 161, 273, 273, 161, 49, 1, 1, 57, 217, 441, 553, 441, 217, 57, 1, 1, 65, 281, 665, 1001, 1001, 665, 281, 65, 1, 1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 01 2009

Keywords

Comments

Triangle T(n,k): the coefficient [x^k] of the polynomial 8*(x+1)^n -7*( x^(n+1) - 1)/(x-1).

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  9,   1;
  1, 17,  17,   1;
  1, 25,  41,  25,    1;
  1, 33,  73,  73,   33,    1;
  1, 41, 113, 153,  113,   41,    1;
  1, 49, 161, 273,  273,  161,   49,   1;
  1, 57, 217, 441,  553,  441,  217,  57,   1;
  1, 65, 281, 665, 1001, 1001,  665, 281,  65,  1;
  1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1;
		

Crossrefs

Sequence m*binomial(n,k) - (m-1): A007318 (m=1), A109128 (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), A131067 (m=7), this sequence (m=8).

Programs

  • Magma
    [8*Binomial(n, k) -7: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A168625:= (n,k) -> 8*binomial(n, k) -7; seq(seq(A168625(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
  • Mathematica
    m = 8; p[x_, n_]:= FullSimplify[ExpandAll[m*(x+1)^n -(m-1)(x^(n+1) -1)/(x-1)]];
    Table[CoefficientList[p[x, n], x], {n,0,10}]//Flatten
    Table[8*Binomial[n, k] -7, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[8*binomial(n, k) -7 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = [x^k] ( 8*(x+1)^n-7*Sum_{s=0..n} x^s ) = 8*A007318(n,k) - 7. - R. J. Mathar, Sep 02 2011

Extensions

Definition simplified by R. J. Mathar, Sep 02 2011

A176200 A symmetrical triangle T(n, m) = 2*Eulerian(n+1, m) -1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 131, 51, 1, 1, 113, 603, 603, 113, 1, 1, 239, 2381, 4831, 2381, 239, 1, 1, 493, 8585, 31237, 31237, 8585, 493, 1, 1, 1003, 29215, 176467, 312379, 176467, 29215, 1003, 1, 1, 2025, 95679, 910383, 2620707, 2620707, 910383, 95679, 2025, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 11 2010

Keywords

Comments

Row sums are: {1, 2, 9, 44, 235, 1434, 10073, 80632, 725751, 7257590, 79833589, ...}.

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   7,    1;
  1,  21,   21,     1;
  1,  51,  131,    51,     1;
  1, 113,  603,   603,   113,    1;
  1, 239, 2381,  4831,  2381,  239,   1;
  1, 493, 8585, 31237, 31237, 8585, 493, 1;
		

Crossrefs

Programs

  • Magma
    Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
    [[2*Eulerian(n+1,k)-1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j,0,k+1}];
    T[n_, m_]:= 2*Eulerian[n+1, m]-1;
    Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
  • PARI
    Eulerian(n,k) = sum(j=0,k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n); {T(n,k) = 2*Eulerian(n+1,k) - 1 };
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
    def T(n,k): return 2*Eulerian(n+1,k)-1
    [[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Apr 25 2019

Formula

T(n, m) = 2*Eulerian(n+1, m) - 1, where Eulerian(n, k) = A008292(n,k).

Extensions

Edited by G. C. Greubel, Apr 25 2019

A132737 Triangle T(n,k) = 2*binomial(n,k) + 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 7, 7, 1, 1, 9, 13, 9, 1, 1, 11, 21, 21, 11, 1, 1, 13, 31, 41, 31, 13, 1, 1, 15, 43, 71, 71, 43, 15, 1, 1, 17, 57, 113, 141, 113, 57, 17, 1, 1, 19, 73, 169, 253, 253, 169, 73, 19, 1, 1, 21, 91, 241, 421, 505, 421, 241, 91, 21, 1, 1, 23, 111, 331, 661, 925, 925, 661, 331, 111, 23, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 26 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  5,  1;
  1,  7,  7,  1;
  1,  9, 13,  9,  1;
  1, 11, 21, 21, 11,  1;
  1, 13, 31, 41, 31, 13,  1;
  1, 15, 43, 71, 71, 43, 15, 1;
  ...
		

Crossrefs

Sequences of the form 2*binomial(n,k) + q: A132729 (q=-3), A132731 (q=-2), A109128 (q=-1), A132046 (q=0), this sequence (q=1).

Programs

  • Magma
    A132737:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) +1 >;
    [A132737(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 15 2021
  • Mathematica
    T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n,k] +1];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
  • Sage
    def A132737(n,k): return 1 if (k==0 or k==n) else 2*binomial(n,k) + 1
    flatten([[A132737(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Feb 15 2021
    

Formula

T(n, k) = 2*A132735(n, k) - 1, an infinite lower triangular matrix.
T(n,0) = T(n,n) = 1; otherwise T(n,k) = 2*C(n,k) + 1. - Franklin T. Adams-Watters, Jul 06 2009
Sum_{k=0..n} T(n, k) = 2^(n+1) + n - 3 + 2*[n=0] = A132738(n). - G. C. Greubel, Feb 15 2021

Extensions

Extended by Franklin T. Adams-Watters, Jul 06 2009

A132752 Triangle T(n, k) = 2*A132749(n, k) - 1, read by rows.

Original entry on oeis.org

1, 3, 1, 3, 3, 1, 3, 5, 5, 1, 3, 7, 11, 7, 1, 3, 9, 19, 19, 9, 1, 3, 11, 29, 39, 29, 11, 1, 3, 13, 41, 69, 69, 41, 13, 1, 3, 15, 55, 111, 139, 111, 55, 15, 1, 3, 17, 71, 167, 251, 251, 167, 71, 17, 1
Offset: 0

Views

Author

Gary W. Adamson, Aug 28 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  3,  1;
  3,  3,  1;
  3,  5,  5,  1;
  3,  7, 11,  7,  1;
  3,  9, 19, 19,  9,  1;
  3, 11, 29, 39, 29, 11, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A132752:= func< n,k | k eq n select 1 else k eq 0 select 3 else 2*Binomial(n,k) -1 >;
    [A132752(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    T[n_, k_]:= If[k==n, 1, If[k==0, 3, 2*Binomial[n, k] -1 ]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def A132752(n,k): return 1 if k==n else 3 if k==0 else 2*binomial(n,k) -1
    flatten([[A132752(n,k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
    

Formula

T(n, k) = 2*A132749(n, k) - 1, an infinite lower triangular matrix.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = A109128(n, k) with T(n, 0) = 3.
Sum_{k=0..n} T(n, k) = 2^(n+1) -n +1 -2*[n=0] = A132753(n) - 2*[n=0]. (End)

A141596 Triangle T(n,k) = 4*binomial(n,k)^2 - 3, read by rows, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 13, 1, 1, 33, 33, 1, 1, 61, 141, 61, 1, 1, 97, 397, 397, 97, 1, 1, 141, 897, 1597, 897, 141, 1, 1, 193, 1761, 4897, 4897, 1761, 193, 1, 1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1, 1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1, 1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 21 2008

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,  13,    1;
  1,  33,   33,     1;
  1,  61,  141,    61,      1;
  1,  97,  397,   397,     97,      1;
  1, 141,  897,  1597,    897,    141,      1;
  1, 193, 1761,  4897,   4897,   1761,    193,     1;
  1, 253, 3133, 12541,  19597,  12541,   3133,   253,    1;
  1, 321, 5181, 28221,  63501,  63501,  28221,  5181,  321,   1;
  1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397,  1;
		

Crossrefs

Cf. A109128.

Programs

  • Magma
    A141596:= func< n,k | 4*Binomial(n,k)^2 - 3 >;
    [A141596(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
    
  • Mathematica
    Table[4*Binomial[n,k]^2-3,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 21 2016 *)
  • SageMath
    def A141596(n,k): return 4*binomial(n,k)^2 -3
    flatten([[A141596(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024

Formula

Sum_{k=0..n} T(n, k) = 4*binomial(2*n,n) - 3*(n+1) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = ((1 + (-1)^n)/2)*(4*(-1)^(n/2)*binomial(n, n/2) - 3) (alternating sign row sums). - G. C. Greubel, Sep 15 2024

A141591 Triangle, read by rows, T(n, k) = 2*A123125(n-1, k), for n >= 2, otherwise T(n, 0) = T(n, n) = -1, with T(0, 0) = T(1, 0) = 1.

Original entry on oeis.org

1, 1, -1, -1, 2, -1, -1, 2, 2, -1, -1, 2, 8, 2, -1, -1, 2, 22, 22, 2, -1, -1, 2, 52, 132, 52, 2, -1, -1, 2, 114, 604, 604, 114, 2, -1, -1, 2, 240, 2382, 4832, 2382, 240, 2, -1, -1, 2, 494, 8586, 31238, 31238, 8586, 494, 2, -1, -1, 2, 1004, 29216, 176468, 312380, 176468, 29216, 1004, 2, -1, -1, 2, 2026, 95680, 910384, 2620708, 2620708, 910384, 95680, 2026, 2, -1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 20 2008

Keywords

Examples

			Triangle begins as:
   1;
   1, -1;
  -1,  2,   -1;
  -1,  2,    2,    -1;
  -1,  2,    8,     2,     -1;
  -1,  2,   22,    22,      2,     -1;
  -1,  2,   52,   132,     52,      2,     -1;
  -1,  2,  114,   604,    604,    114,      2,    -1;
  -1,  2,  240,  2382,   4832,   2382,    240,     2,   -1;
  -1,  2,  494,  8586,  31238,  31238,   8586,   494,    2,  -1;
  -1,  2, 1004, 29216, 176468, 312380, 176468, 29216, 1004,   2,  -1;
		

References

  • Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, McGraw-Hill, New York, 1976, page 91.

Crossrefs

Cf. 033312, A109128.

Programs

  • Magma
    Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j)^n: j in [0..k]]) >; // A008292
    function A141591(n,k)
      if n eq 0 then return 1;
      elif k eq 0 and n eq 1 then return 1;
      elif k eq 0 or k eq n then return -1;
      else return 2*Eulerian(n-1,k);
      end if;
    end function;
    [A141591(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
    
  • Mathematica
    (* First program *)
    f[x_, n_]:= f[x, n]= (1-x)^(n+1)*Sum[k^n*x^k, {k, 0, Infinity}];
    Table[Simplify[f[x, n]], {n, 0, 10}];
    Join[{{1}}, Table[Join[CoefficientList[2*f[x,n] -1, x], {-1}], {n, 0, 10}]]//Flatten
    (* Second program *)
    Eulerian[n_, k_]:= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}]; (* A008292 *)
    A141591[n_, k_]:= If[k==0 || k==n, -1, 2*Eulerian[n-1,k]] +2*Boole[n==0 || n ==1 && k==0];
    Table[A141591[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 15 2024 *)
  • SageMath
    @CachedFunction
    def A008292(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j)^n for j in range(k+1))
    def A141591(n,k):
        if (k==0 and n==0): return 1
        elif (k==0 and n==1): return 1
        elif (k==0 or k==n): return -1
        else: return 2*A008292(n-1, k)
    flatten([[A141591(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024

Formula

T(n, k) = 2*A123125(n-1, k), with T(0, 0) = T(1, 0) = 1, otherwise T(n, 0) = T(n, n) = -1.
Sum_{k=0..n} T(n, k) = 2*033312(n), for n >= 1, otherwise 1 (n=0).
From G. C. Greubel, Sep 15 2024: (Start)
T(n, k) = 2*A008292(n, k) for n >= 2, 1 <= k <= n-1, with T(n, 0) = T(n, n) = -1, T(0, 0) = T(1, 0) = 1.
T(n, n-k) = T(n, k) for n >= 2. (End)

Extensions

Edited and new name by G. C. Greubel, Sep 15 2024
Previous Showing 11-20 of 22 results. Next