A131067
Triangle read by rows: T(n,k) = 7*binomial(n,k) - 6 for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 36, 22, 1, 1, 29, 64, 64, 29, 1, 1, 36, 99, 134, 99, 36, 1, 1, 43, 141, 239, 239, 141, 43, 1, 1, 50, 190, 386, 484, 386, 190, 50, 1, 1, 57, 246, 582, 876, 876, 582, 246, 57, 1, 1, 64, 309, 834, 1464, 1758, 1464, 834, 309, 64, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 8, 1;
1, 15, 15, 1;
1, 22, 36, 22, 1;
1, 29, 64, 64, 29, 1;
...
-
[7*Binomial(n, k) -6: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
-
T := proc (n, k) if k <= n then 7*binomial(n, k)-6 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
-
Table[7*Binomial[n, k] -6, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
-
[[7*binomial(n, k) -6 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
A123203
a(n) = 2^(n+1) - 3*n.
Original entry on oeis.org
1, 2, 7, 20, 49, 110, 235, 488, 997, 2018, 4063, 8156, 16345, 32726, 65491, 131024, 262093, 524234, 1048519, 2097092, 4194241, 8388542, 16777147, 33554360, 67108789, 134217650, 268435375, 536870828, 1073741737, 2147483558
Offset: 1
a(4) = 20, row sums of 4th row of triangle A131062: (1, 9, 9, 1).
a(4) = 20 = (1, 3, 3, 1) dot (1, 1, 4, 4) = (1 + 3 + 12 + 4).
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Joseph Breen and Emma Copeland, Non-orientable Nurikabe, arXiv:2506.12612 [math.CO], 2025. See pp. 1, 4.
- Tamas Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015) 73-94.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
-
[2^(n+1) -3*n: n in [1..40]]; // G. C. Greubel, Sep 14 2024
-
Table[2^(n+1) - 3*n, {n,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *)
LinearRecurrence[{4,-5,2},{1,2,7},40] (* Harvey P. Dale, Mar 30 2024 *)
-
def A123203(n): return 2^(n+1) -3*n
[A123203(n) for n in range(1,41)] # G. C. Greubel, Sep 14 2024
A131064
Binomial transform of [1, 1, 5, 5, 5, ...].
Original entry on oeis.org
1, 2, 8, 24, 60, 136, 292, 608, 1244, 2520, 5076, 10192, 20428, 40904, 81860, 163776, 327612, 655288, 1310644, 2621360, 5242796, 10485672, 20971428, 41942944, 83885980, 167772056, 335544212, 671088528, 1342177164, 2684354440
Offset: 0
a(3) = 24 = sum of row 4 terms of A131063: (1 + 11 + 11 + 1).
a(3) = 24 = (1, 3, 3, 1) dot (1, 1, 5, 5).
-
Print(List([0..30],n->5*2^n-4*n-4)); # Muniru A Asiru, Feb 21 2019
-
I:=[1, 2, 8]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2) + 2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 05 2012
-
a := proc (n) options operator, arrow; 5*2^n-4*n-4 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
-
CoefficientList[Series[(1-2x+5x^2)/((1-2x)(1-x)^2),{x,0,40}],x] (* Vincenzo Librandi, Jul 05 2012 *)
LinearRecurrence[{4,-5,2},{1,2,8},30] (* Harvey P. Dale, Dec 29 2014 *)
-
[5*2^n -4*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020
A131066
Binomial transform of [1, 1, 6, 6, 6, ...].
Original entry on oeis.org
1, 2, 9, 28, 71, 162, 349, 728, 1491, 3022, 6089, 12228, 24511, 49082, 98229, 196528, 393131, 786342, 1572769, 3145628, 6291351, 12582802, 25165709, 50331528, 100663171, 201326462, 402653049, 805306228, 1610612591, 3221225322
Offset: 0
a(3) = 28 = sum of row 4 of triangle A131065: (1 + 13 + 13 + 1).
a(3) = 28 = (1, 3, 3, 1) dot (1, 1, 6, 6) = (1 + 3 + 18 + 6).
-
Print(List([0..30],n->6*2^n-5*n-5)); # Muniru A Asiru, Feb 21 2019
-
[6*2^n -5*(n+1): n in [0..30]]; // G. C. Greubel, Mar 12 2020
-
a := proc (n) options operator, arrow; 6*2^n-5*n-5 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
-
Table[6*2^n -5*(n+1), {n,0,30}] (* G. C. Greubel, Mar 12 2020 *)
-
[6*2^n -5*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020
A168625
Triangle T(n,k) = 8*binomial(n,k) - 7 with columns 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 41, 25, 1, 1, 33, 73, 73, 33, 1, 1, 41, 113, 153, 113, 41, 1, 1, 49, 161, 273, 273, 161, 49, 1, 1, 57, 217, 441, 553, 441, 217, 57, 1, 1, 65, 281, 665, 1001, 1001, 665, 281, 65, 1, 1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 9, 1;
1, 17, 17, 1;
1, 25, 41, 25, 1;
1, 33, 73, 73, 33, 1;
1, 41, 113, 153, 113, 41, 1;
1, 49, 161, 273, 273, 161, 49, 1;
1, 57, 217, 441, 553, 441, 217, 57, 1;
1, 65, 281, 665, 1001, 1001, 665, 281, 65, 1;
1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1;
-
[8*Binomial(n, k) -7: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
-
A168625:= (n,k) -> 8*binomial(n, k) -7; seq(seq(A168625(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
-
m = 8; p[x_, n_]:= FullSimplify[ExpandAll[m*(x+1)^n -(m-1)(x^(n+1) -1)/(x-1)]];
Table[CoefficientList[p[x, n], x], {n,0,10}]//Flatten
Table[8*Binomial[n, k] -7, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
-
[[8*binomial(n, k) -7 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020
A176200
A symmetrical triangle T(n, m) = 2*Eulerian(n+1, m) -1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 131, 51, 1, 1, 113, 603, 603, 113, 1, 1, 239, 2381, 4831, 2381, 239, 1, 1, 493, 8585, 31237, 31237, 8585, 493, 1, 1, 1003, 29215, 176467, 312379, 176467, 29215, 1003, 1, 1, 2025, 95679, 910383, 2620707, 2620707, 910383, 95679, 2025, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 21, 21, 1;
1, 51, 131, 51, 1;
1, 113, 603, 603, 113, 1;
1, 239, 2381, 4831, 2381, 239, 1;
1, 493, 8585, 31237, 31237, 8585, 493, 1;
-
Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;
[[2*Eulerian(n+1,k)-1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Apr 25 2019
-
Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j,0,k+1}];
T[n_, m_]:= 2*Eulerian[n+1, m]-1;
Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten (* modified by G. C. Greubel, Apr 25 2019 *)
-
Eulerian(n,k) = sum(j=0,k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n); {T(n,k) = 2*Eulerian(n+1,k) - 1 };
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 25 2019
-
def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
def T(n,k): return 2*Eulerian(n+1,k)-1
[[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Apr 25 2019
A132737
Triangle T(n,k) = 2*binomial(n,k) + 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 7, 7, 1, 1, 9, 13, 9, 1, 1, 11, 21, 21, 11, 1, 1, 13, 31, 41, 31, 13, 1, 1, 15, 43, 71, 71, 43, 15, 1, 1, 17, 57, 113, 141, 113, 57, 17, 1, 1, 19, 73, 169, 253, 253, 169, 73, 19, 1, 1, 21, 91, 241, 421, 505, 421, 241, 91, 21, 1, 1, 23, 111, 331, 661, 925, 925, 661, 331, 111, 23, 1
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 5, 1;
1, 7, 7, 1;
1, 9, 13, 9, 1;
1, 11, 21, 21, 11, 1;
1, 13, 31, 41, 31, 13, 1;
1, 15, 43, 71, 71, 43, 15, 1;
...
-
A132737:= func< n,k | k eq 0 or k eq n select 1 else 2*Binomial(n,k) +1 >;
[A132737(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 15 2021
-
T[n_, k_]:= If[k==0 || k==n, 1, 2*Binomial[n,k] +1];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
-
def A132737(n,k): return 1 if (k==0 or k==n) else 2*binomial(n,k) + 1
flatten([[A132737(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Feb 15 2021
A132752
Triangle T(n, k) = 2*A132749(n, k) - 1, read by rows.
Original entry on oeis.org
1, 3, 1, 3, 3, 1, 3, 5, 5, 1, 3, 7, 11, 7, 1, 3, 9, 19, 19, 9, 1, 3, 11, 29, 39, 29, 11, 1, 3, 13, 41, 69, 69, 41, 13, 1, 3, 15, 55, 111, 139, 111, 55, 15, 1, 3, 17, 71, 167, 251, 251, 167, 71, 17, 1
Offset: 0
First few rows of the triangle are:
1;
3, 1;
3, 3, 1;
3, 5, 5, 1;
3, 7, 11, 7, 1;
3, 9, 19, 19, 9, 1;
3, 11, 29, 39, 29, 11, 1;
...
-
A132752:= func< n,k | k eq n select 1 else k eq 0 select 3 else 2*Binomial(n,k) -1 >;
[A132752(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
T[n_, k_]:= If[k==n, 1, If[k==0, 3, 2*Binomial[n, k] -1 ]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
-
def A132752(n,k): return 1 if k==n else 3 if k==0 else 2*binomial(n,k) -1
flatten([[A132752(n,k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
A141596
Triangle T(n,k) = 4*binomial(n,k)^2 - 3, read by rows, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 13, 1, 1, 33, 33, 1, 1, 61, 141, 61, 1, 1, 97, 397, 397, 97, 1, 1, 141, 897, 1597, 897, 141, 1, 1, 193, 1761, 4897, 4897, 1761, 193, 1, 1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1, 1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1, 1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 13, 1;
1, 33, 33, 1;
1, 61, 141, 61, 1;
1, 97, 397, 397, 97, 1;
1, 141, 897, 1597, 897, 141, 1;
1, 193, 1761, 4897, 4897, 1761, 193, 1;
1, 253, 3133, 12541, 19597, 12541, 3133, 253, 1;
1, 321, 5181, 28221, 63501, 63501, 28221, 5181, 321, 1;
1, 397, 8097, 57597, 176397, 254013, 176397, 57597, 8097, 397, 1;
-
A141596:= func< n,k | 4*Binomial(n,k)^2 - 3 >;
[A141596(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
-
Table[4*Binomial[n,k]^2-3,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 21 2016 *)
-
def A141596(n,k): return 4*binomial(n,k)^2 -3
flatten([[A141596(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024
A141591
Triangle, read by rows, T(n, k) = 2*A123125(n-1, k), for n >= 2, otherwise T(n, 0) = T(n, n) = -1, with T(0, 0) = T(1, 0) = 1.
Original entry on oeis.org
1, 1, -1, -1, 2, -1, -1, 2, 2, -1, -1, 2, 8, 2, -1, -1, 2, 22, 22, 2, -1, -1, 2, 52, 132, 52, 2, -1, -1, 2, 114, 604, 604, 114, 2, -1, -1, 2, 240, 2382, 4832, 2382, 240, 2, -1, -1, 2, 494, 8586, 31238, 31238, 8586, 494, 2, -1, -1, 2, 1004, 29216, 176468, 312380, 176468, 29216, 1004, 2, -1, -1, 2, 2026, 95680, 910384, 2620708, 2620708, 910384, 95680, 2026, 2, -1
Offset: 0
Triangle begins as:
1;
1, -1;
-1, 2, -1;
-1, 2, 2, -1;
-1, 2, 8, 2, -1;
-1, 2, 22, 22, 2, -1;
-1, 2, 52, 132, 52, 2, -1;
-1, 2, 114, 604, 604, 114, 2, -1;
-1, 2, 240, 2382, 4832, 2382, 240, 2, -1;
-1, 2, 494, 8586, 31238, 31238, 8586, 494, 2, -1;
-1, 2, 1004, 29216, 176468, 312380, 176468, 29216, 1004, 2, -1;
- Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, McGraw-Hill, New York, 1976, page 91.
-
Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j)^n: j in [0..k]]) >; // A008292
function A141591(n,k)
if n eq 0 then return 1;
elif k eq 0 and n eq 1 then return 1;
elif k eq 0 or k eq n then return -1;
else return 2*Eulerian(n-1,k);
end if;
end function;
[A141591(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
-
(* First program *)
f[x_, n_]:= f[x, n]= (1-x)^(n+1)*Sum[k^n*x^k, {k, 0, Infinity}];
Table[Simplify[f[x, n]], {n, 0, 10}];
Join[{{1}}, Table[Join[CoefficientList[2*f[x,n] -1, x], {-1}], {n, 0, 10}]]//Flatten
(* Second program *)
Eulerian[n_, k_]:= Sum[(-1)^j*(k-j)^n*Binomial[n+1,j], {j,0,k}]; (* A008292 *)
A141591[n_, k_]:= If[k==0 || k==n, -1, 2*Eulerian[n-1,k]] +2*Boole[n==0 || n ==1 && k==0];
Table[A141591[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 15 2024 *)
-
@CachedFunction
def A008292(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j)^n for j in range(k+1))
def A141591(n,k):
if (k==0 and n==0): return 1
elif (k==0 and n==1): return 1
elif (k==0 or k==n): return -1
else: return 2*A008292(n-1, k)
flatten([[A141591(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024
Comments