A000736
Boustrophedon transform of Catalan numbers 1, 1, 1, 2, 5, 14, ...
Original entry on oeis.org
1, 2, 4, 10, 32, 120, 513, 2455, 13040, 76440, 492231, 3465163, 26530503, 219754535, 1959181266, 18710532565, 190588702776, 2062664376064, 23636408157551, 285900639990875, 3640199365715769, 48665876423760247
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a000736 n = sum $ zipWith (*) (a109449_row n) (1 : a000108_list)
-- Reinhard Zumkeller, Nov 05 2013
-
egf := (sec(x/2)+tan(x/2))*(exp(x)*((x-1/2)*BesselI(0,x)-x*BesselI(1,x))+3/2);
s := n -> 2^n*n!*coeff(series(egf,x,n+2),x,n); seq(s(n), n=0..22); # Peter Luschny, Oct 30 2014, after Sergei N. Gladkovskii
-
CoefficientList[Series[1/2*(3 + E^(2*x)*((4*x-1)*BesselI[0, 2*x] - 4*x*BesselI[1, 2*x]))*(Sec[x] + Tan[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 30 2014, after Peter Luschny *)
t[n_, 0] := If[n == 0, 1, CatalanNumber[n - 1]]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
from itertools import accumulate, count, islice
def A000736_gen(): # generator of terms
yield 1
blist, c = (1,), 1
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
c = c*(4*i+2)//(i+2)
A000736_list = list(islice(A000736_gen(),40)) # Chai Wah Wu, Jun 12 2022
A000746
Boustrophedon transform of triangular numbers.
Original entry on oeis.org
1, 4, 13, 39, 120, 407, 1578, 7042, 35840, 205253, 1306454, 9148392, 69887664, 578392583, 5155022894, 49226836114, 501420422112, 5426640606697, 62184720675718, 752172431553308, 9576956842743904, 128034481788227195
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a000746 n = sum $ zipWith (*) (a109449_row n) $ tail a000217_list
-- Reinhard Zumkeller, Nov 03 2013
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( (Sec(x)+Tan(x))*Exp(x)*(x^2+4*x+2)/2 ))); // G. C. Greubel, Jul 10 2025
-
t[n_, 0] := (n + 1) (n + 2)/2; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
from itertools import accumulate, count, islice
def A000746_gen(): # generator of terms
blist, c = tuple(), 1
for i in count(2):
yield (blist := tuple(accumulate(reversed(blist),initial=c)))[-1]
c += i
A000746_list = list(islice(A000746_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
@CachedFunction
def f(n, k):
if (k==0): return binomial(n+2,2)
else: return f(n, k-1) + f(n-1, n-k)
def A000746(n): return f(n,n)
[A000746(n) for n in range(31)] # G. C. Greubel, Jul 10 2025
A230952
Boustrophedon transform of Hamming weight (A000120).
Original entry on oeis.org
0, 1, 3, 8, 23, 72, 280, 1242, 6331, 36236, 230726, 1615584, 12342422, 102145644, 910393530, 8693609421, 88552405435, 958361506524, 10982014291650, 132835979792636, 1691320230842116, 22611285878526978, 316685416851528722, 4636988553066906265
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a230952 n = sum $ zipWith (*) (a109449_row n) $ map fromIntegral a000120_list
(Python 3.10+)
from itertools import accumulate, count, islice
def A230952_gen(): # generator of terms
blist = tuple()
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist),initial=i.bit_count())))[-1]
A230952_list = list(islice(A230952_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];
a[n_] := Sum[T[n, k] DigitCount[k, 2, 1], {k, 0, n}];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 23 2019 *)
A230957
Boustrophedon transform of partition numbers A000009.
Original entry on oeis.org
1, 2, 4, 10, 29, 94, 364, 1621, 8255, 47277, 300962, 2107479, 16099922, 133243363, 1187555333, 11340314638, 115511502857, 1250127378307, 14325404633040, 173276880401035, 2206229765086251, 29495119298584886, 413097874985119467, 6048684327982905454
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..150
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a230957 n = sum $ zipWith (*) (a109449_row n) a000009_list
-
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];
a[n_] := Sum[T[n, k] PartitionsQ[k], {k, 0, n}];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 23 2019 *)
A231200
Boustrophedon transform of even numbers.
Original entry on oeis.org
0, 2, 8, 24, 72, 240, 924, 4116, 20944, 119952, 763540, 5346748, 40845816, 338041704, 3012855356, 28770647220, 293055401888, 3171602665696, 36343889387172, 439607533130732, 5597256953340360, 74829813397495128, 1048039052970587788, 15345654816688856484
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon_transform
- Index entries for sequences related to boustrophedon transform
-
a231200 n = sum $ zipWith (*) (a109449_row n) $ [0, 2 ..]
-
T[n_, k_] := SeriesCoefficient[(1+Sin[x])/Cos[x], {x, 0, n-k}] n!/k!;
a[n_] := 2 Sum[k T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 28 2019 *)
-
from itertools import accumulate, count, islice
def A231200_gen(): # generator of terms
blist = tuple()
for i in count(0,2):
yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1]
A231200_list = list(islice(A231200_gen(),40)) # Chai Wah Wu, Jun 12 2022
A000660
Boustrophedon transform of 1,1,2,3,4,5,...
Original entry on oeis.org
1, 2, 5, 14, 41, 136, 523, 2330, 11857, 67912, 432291, 3027166, 23125673, 191389108, 1705788659, 16289080922, 165919213089, 1795666675824, 20576824369027, 248892651678198, 3168999664907705, 42366404751871660, 593368400878431795, 8688251294851280594
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms
- Wikipedia, Boustrophedon transform
- Index entries for sequences related to boustrophedon transform
-
a000660 n = sum $ zipWith (*) (a109449_row n) (1 : [1..])
-- Reinhard Zumkeller, Nov 04 2013
-
seq(coeff(series(factorial(n)*(x*exp(x)+1)*(sec(x)+tan(x)), x,n+1),x,n),n=0..25); # Muniru A Asiru, Jul 30 2018
-
a[n_] := n! SeriesCoefficient[(1+x Exp[x])(1+Sin[x])/Cos[x], {x, 0, n}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 30 2018, after Sergei N. Gladkovskii *)
-
from itertools import accumulate, count, islice
def A000660_gen(): # generator of terms
yield 1
blist = (1,)
for i in count(1):
yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1]
A000660_list = list(islice(A000660_gen(),40)) # Chai Wah Wu, Jun 12 2022
-
# Algorithm of L. Seidel (1877)
def A000660_list(n) :
R = []; A = {-1:0, 0:1}
k = 0; e = 1
for i in range(n) :
Am = i
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
print([A[z] for z in (-i//2..i//2)])
R.append(A[e*i//2])
return R
A000660_list(10) # Peter Luschny, Jun 02 2012
A000733
Boustrophedon transform of partition numbers 1, 1, 1, 2, 3, 5, 7, ...
Original entry on oeis.org
1, 2, 4, 10, 30, 101, 394, 1760, 8970, 51368, 326991, 2289669, 17491625, 144760655, 1290204758, 12320541392, 125496010615, 1358185050788, 15563654383395, 188254471337718, 2396930376564860, 32044598671291610
Offset: 0
The array begins:
1
1 -> 2
4 <- 3 <- 1
2 -> 6 -> 9 -> 10
30 <- 28 <- 22 <- 13 <- 3
- _John Cerkan_, Jan 26 2017
- John Cerkan, Table of n, a(n) for n = 0..482
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a000733 n = sum $ zipWith (*) (a109449_row n) (1 : a000041_list)
-- Reinhard Zumkeller, Nov 04 2013
-
t[n_, 0] := If[n == 0, 1, PartitionsP[n-1]]; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
-
from itertools import count, accumulate, islice
from sympy import npartitions
def A000733_gen(): # generator of terms
yield 1
blist = (1,)
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist),initial=npartitions(i))))[-1]
A000733_list = list(islice(A000733_gen(),40)) # Chai Wah Wu, Jun 12 2022
A230958
Boustrophedon transform of Thue-Morse sequence A001285.
Original entry on oeis.org
1, 3, 7, 15, 39, 127, 480, 2143, 10907, 62495, 397814, 2785861, 21282228, 176133285, 1569817724, 14990658724, 152693582275, 1652531857935, 18936620009722, 229053108410969, 2916394751599614, 38989325834726043, 546070266163669664, 7995699956778626764
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a230958 n = sum $ zipWith (*) (a109449_row n) $ map fromIntegral a001285_list
-
T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];
tm[n_] := Mod[Sum[Mod[Binomial[n, k], 2], {k, 0, n}], 3];
Table[Sum[T[n, k] tm[k], {k, 0, n}], {n, 0, 23}] (* Jean-François Alcover, Jul 23 2019 *)
-
from itertools import accumulate, count, islice
def A230958_gen(): # generator of terms
blist = tuple()
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist), initial=2 if i.bit_count()&1 else 1)))[-1]
A230958_list = list(islice(A230958_gen(),30)) # Chai Wah Wu, Apr 17 2023
A000674
Boustrophedon transform of 1, 2, 2, 2, 2, ...
Original entry on oeis.org
1, 3, 7, 16, 43, 138, 527, 2346, 11943, 68418, 435547, 3050026, 23300443, 192835698, 1718682167, 16412205306, 167173350543, 1809239622978, 20732358910387, 250773962554186, 3192953259262243, 42686640718266258, 597853508941160207
Offset: 0
G.f. = 1 + 3*x + 7*x^2 + 16*x^3 + 43*x^4 + 138*x^5 + 527*x^6 + 2346*x^7 + ...
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
-
a000674 n = sum $ zipWith (*) (a109449_row n) (1 : repeat 2)
-- Reinhard Zumkeller, Nov 04 2013
-
With[{nn=30},CoefficientList[Series[(Sec[x]+Tan[x])(2Exp[x]-1),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 04 2015 *)
-
from itertools import accumulate, islice
def A000674_gen(): # generator of terms
yield 1
blist = (1,)
while True:
yield (blist := tuple(accumulate(reversed(blist),initial=2)))[-1]
A000674_list = list(islice(A000674_gen(),30)) # Chai Wah Wu, Jun 11 2022
Original entry on oeis.org
1, 2, 3, 5, 10, 26, 87, 359, 1744, 9680, 60201, 413993, 3116758, 25485014, 224845995, 2128603307, 21520115452, 231385458428, 2636265133869, 31725150246701, 402096338484226, 5353594391608322, 74702468784746223, 1090126355291598575, 16604660518848685480
Offset: 0
a(22) = 1 + 1 + 1 + 2 + 5 + 16 + 61 + 272 + 1385 + 7936 + 50521 + 353792 + 2702765 + 22368256 + 199360981 + 1903757312 + 19391512145 + 209865342976 + 2404879675441 + 29088885112832 + 370371188237525 + 4951498053124096 + 69348874393137901.
Cf.
A000111,
A000364,
A000182,
A008280,
A008281,
A008282,
A010094,
A059720,
A008970,
A109449,
A162170.
-
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= proc(n) option remember;
`if`(n<0, 0, a(n-1))+ b(n, 0)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 27 2017
-
With[{nn=30},Accumulate[CoefficientList[Series[Sec[x]+Tan[x],{x,0,nn}],x] Range[0,nn]!]] (* Harvey P. Dale, Feb 26 2012 *)
-
from itertools import accumulate
def A173253(n):
if n<=1:
return n+1
c, blist = 2, (0,1)
for _ in range(n-1):
c += (blist := tuple(accumulate(reversed(blist),initial=0)))[-1]
return c # Chai Wah Wu, Apr 16 2023
Comments