cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A177221 Numbers k that are the products of two distinct primes such that 2*k + 1 is also the product of two distinct primes.

Original entry on oeis.org

10, 34, 38, 46, 55, 57, 77, 91, 93, 106, 118, 123, 129, 133, 143, 145, 159, 161, 177, 185, 201, 203, 205, 206, 213, 218, 226, 235, 259, 267, 291, 295, 298, 305, 314, 327, 334, 335, 339, 358, 365, 377, 381, 394, 395, 403, 407, 415, 417, 446, 447, 458, 466, 469
Offset: 1

Views

Author

Keywords

Examples

			10 is in the sequence because 10 = 2*5 and 2*10+1 = 21 = 3*7.
		

Crossrefs

Programs

  • Maple
    isA006881:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F)=2 and F[1, 2]+F[2, 2]=2
    end proc:
    filter:= n -> andmap(isA006881, [n, 2*n+1]); select(filter, [$1..1000]); # Robert Israel, Nov 09 2017
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n+1],AppendTo[lst,n]],{n,0,3*6!}];lst
    Select[Range[500],PrimeNu[#]==PrimeOmega[#]==PrimeNu[2#+1] == PrimeOmega[ 2#+1] == 2&] (* Harvey P. Dale, Feb 22 2018 *)

A113433 Semi-Pierpont semiprimes: products of exactly two Pierpont primes A005109.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 25, 26, 34, 35, 38, 39, 49, 51, 57, 65, 74, 85, 91, 95, 111, 119, 133, 146, 169, 185, 194, 218, 219, 221, 247, 259, 289, 291, 323, 326, 327, 361, 365, 386, 481, 485, 489, 511, 514, 545, 579, 629, 679, 703, 763, 771, 815, 866, 949, 965
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Comments

Semiprime both of whose prime factors are Pierpont primes (A005109), which are primes of the form (2^K)*(3^L)+1. Not to be confused with A113432: Pierpont semiprimes [Semiprimes of the form (2^K)*(3^L)+1]. This terminology itself is by analogy to what Tomaszewski used for the Sophie Germain counterparts A111153 and A111206.

Examples

			a(1) = 4 = 2^2 = [(2^0)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(1)*A005109(1).
a(2) = 6 = 2*3 = [(2^0)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(1)*A005109(2).
a(3) = 9 = 3^2 = [(2^1)*(3^0)+1]*[(2^1)*(3^0)+1] = A005109(2)*A005109(2).
a(4) = 10 = 2*5 = [(2^0)*(3^0)+1]*[(2^2)*(3^0)+1] = A005109(1)*A005109(3).
a(5) = 14 = 2*7 = [(2^0)*(3^0)+1]*[(2^1)*(3^1)+1] = A005109(1)*A005109(4).
a(6) = 15 = 3*5 = [(2^1)*(3^0)+1]*[(2^2)*(3^0)+1] = A005109(2)*A005109(3).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], Plus @@ Last /@ FactorInteger[ # ] == 2 && And @@ (Max @@ First /@ FactorInteger[ # - 1] < 5 &) /@ First /@ FactorInteger[ # ] &] (* Ray Chandler, Jan 24 2006 *)

Formula

{a(n)} = Semiprimes A001358 both of whose factors are of the form (2^K)*(3^L)+1. {a(n)} = {A005109(i)*A005109(j) for integers i and j not necessarily distinct}.

A113434 Semi-Pierpont semiprimes which are also Pierpont semiprimes.

Original entry on oeis.org

4, 9, 10, 25, 49, 65, 289
Offset: 1

Views

Author

Jonathan Vos Post, Nov 01 2005

Keywords

Comments

Semiprimes both of whose prime factors are Pierpont primes (A005109), which are primes of the form (2^K)*(3^L)+1 and where the semiprime is itself of the form (2^K)*(3^L)+1.
No more under 10^50; what is the next element of this sequence?
No more terms <= 10^100. - Robert Israel, Mar 10 2017
This sequence is complete, see Links. - Charlie Neder, Feb 04 2019

Examples

			a(1) = 4 = 2^2 = [(2^0)*(3^0)+1]*[(2^0)*(3^0)+1] = (2^0)*(3^1)+1.
a(2) = 9 = 3^2 = [(2^1)*(3^0)+1]*[(2^1)*(3^0)+1] = (2^3)*(3^0)+1.
a(3) = 10 = 2*5 = [(2^0)*(3^0)+1]*[(2^2)*(3^0)+1] = (2^0)*(3^2)+1.
a(4) = 25 = 5^2 = [(2^2)*(3^0)+1]*[(2^2)*(3^0)+1] = (2^3)*(3^1)+1.
a(5) = 49 = 7^2 = [(2^1)*(3^1)+1]*[(2^1)*(3^1)+1] = (2^4)*(3^1)+1.
a(6) = 65 = 5*13 = [(2^2)*(3^0)+1]*[(2^2)*(3^1)+1] = (2^6)*(3^0)+1.
a(7) = 289 = 17^2 = [(2^4)*(3^0)+1]*[(2^4)*(3^0)+1] = (2^5)*(3^2)+1.
		

Crossrefs

Programs

  • Maple
    N:= 10^100: # to get all terms <= N
    PP:= select(isprime, {seq(seq(1+2^i*3^j, i=0..ilog2((N-1)/3^j)),j=0..floor(log[3](N-1)))}):
    SP:= select(t -> t <= N and t = 1+2^padic:-ordp(t-1,2)*3^padic:-ordp(t-1,3), [seq(seq(PP[i]*PP[j], j=1..i),i=1..nops(PP))]):
    sort(convert(SP,list)); # Robert Israel, Mar 10 2017

Formula

{a(n)} = intersection of A113432 and A113433. {a(n)} = Semiprimes A001358 of the form (2^K)*(3^L)+1 both of whose factors are of the form (2^K)*(3^L)+1. {a(n)} = {integers P such that, for nonnegative integers I, J, K, L, m, n there is a solution to (2^I)*(3^J)+1 = [(2^K)*(3^L)+1]*[(2^m)*(3^n)+1] where both [(2^K)*(3^L)+1] and [(2^m)*(3^n)+1] are prime}.

A175256 a(n) = sqrt(A175255(n)).

Original entry on oeis.org

2, 5, 13, 17, 19, 23, 31, 53, 71, 89, 113, 127, 157, 163, 167, 181, 197, 229, 347, 373, 401, 409, 419, 449, 487, 503, 509, 523, 541, 563, 571, 577, 599, 647, 751, 769, 773, 823, 827, 883, 919, 937, 941, 967, 971, 977, 1009, 1013, 1031, 1039, 1171, 1201, 1223
Offset: 1

Views

Author

Zak Seidov, Mar 15 2010

Keywords

Crossrefs

A176896 Semiprimes s such that (s-1)/2 is also semiprime.

Original entry on oeis.org

9, 21, 51, 69, 77, 93, 111, 115, 155, 183, 187, 213, 237, 247, 259, 267, 287, 291, 319, 323, 339, 355, 371, 403, 407, 411, 413, 427, 437, 453, 471, 519, 535, 579, 583, 591, 597, 611, 629, 655, 669, 671, 679, 717, 723, 731, 755, 763, 789, 791, 807, 815, 831
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 28 2010

Keywords

Comments

Semiprime analog of safe primes (A005385). - Zak Seidov, Feb 01 2017

Examples

			a(1)=9 because (3*3 - 1)/2 = 4 = 2*2; a(2)=21 because (3*7 - 1)/2 = 10 = 2*5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]==PrimeOmega[(#-1)/2]==2&] (* Harvey P. Dale, Jan 28 2016 *)

Formula

a(n) = 2*A111153(n) + 1. - Zak Seidov, Sep 10 2012

Extensions

Corrected (497 and 745 removed) by R. J. Mathar, May 01 2010

A211162 Sophie Germain 5-almost primes.

Original entry on oeis.org

688, 1552, 3496, 4360, 5008, 6352, 6952, 7546, 7672, 9256, 9625, 9712, 10062, 10300, 10840, 11632, 11875, 12112, 12136, 12460, 12712, 13432, 13648, 13744, 13912, 14152, 14812, 14920, 15484, 16562, 17050, 17104, 17272, 17608, 17752, 18130, 18232, 18616, 18952, 19062, 19624, 19792, 21100, 21136, 21352
Offset: 1

Views

Author

Keywords

Comments

Numbers n that are products of exactly 5 primes, such that 2*n + 1 are also products of exactly 5 primes. By analogy with A111153 Sophie Germain semiprimes: semiprimes n such that 2n+1 is also a semiprime; A111173 Sophie Germain 3-almost primes; A111176 Sophie Germain 4-almost primes.
From Zak Seidov, Jan 30 2013: (Start)
First integers n such that both n and 2n+1 are Sophie Germain 5-almost primes are: 54708, 103812, 111952, 113368, 117328, 134312, 159568, 160062, 165462, 199048, 205812.
First integers n such that n, 2n+1 and 4n+3 all are Sophie Germain 5-almost primes are: 159568, 301812, 431068, 444388, 564718, 1144468, 1420468, 1653162, 1687768, 1794568.
First integers n such that n, 2n+1, 4n+3 and 8n+7 all are Sophie Germain 5-almost primes are: 2991345, 4553367, 7760616, 9145318, 9332368, 12919266, 14283535, 14659746, 15144118.
First integers n such that n, 2n+1, 4n+3, 8n+7 and 16n+15 all are Sophie Germain 5-almost primes are: 15144118, 18515752, 41092024, 60406662, 71783890, 87353512, 94144212
First integers n such that n, 2n+1, 4n+3, 8n+7, 16n+15 and 32n+31 all are Sophie Germain 5-almost primes are: 211457337, 237572475, 245071092, 352015408, 415695462, 433833417.
First integers n such that n, 2n+1, 4n+3, 8n+7, 16n+15, 32n+31 and 64n+63 all are Sophie Germain 5-almost primes are: 433833417, 463078210, 648871975. (End)

Examples

			a(1) = 688 because 688 = 2^4 * 43, and 2*688 + 1 = 1377 = 3^4 * 17.
		

Crossrefs

Programs

  • Magma
    Is5primes:=func; [n: n in [2..22000] | Is5primes(n) and Is5primes(2*n+1)]; // Bruno Berselli, Jan 30 2013
    
  • Mathematica
    fQ[n_] := PrimeOmega[n] == 5 == PrimeOmega[2 n + 1]; Select[Range@ 100000, fQ] (* Robert G. Wilson v *)
  • PARI
    is(n)=bigomega(n)==5 && bigomega(2*n+1)==5 \\ Charles R Greathouse IV, Feb 01 2017

Formula

{n in A014614 such that 2*n + 1 is in A014614}.

A111207 Numbers that are both Sophie Germain semiprimes and semi-Sophie Germain semiprimes.

Original entry on oeis.org

4, 10, 25, 46, 55, 106, 123, 145, 159, 205, 226, 267, 339, 358, 415, 466, 529, 573, 583, 718, 753, 843, 865, 979, 1077, 1195, 1243, 1257, 1293, 1366, 1405, 1465, 1473, 1486, 2098, 2157, 2206, 2427, 2455, 2545, 2563, 2581, 2599, 2629, 2809, 2818, 2998, 3057
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 24 2005

Keywords

Comments

This is the intersection of the sequence of Sophie Germain semiprimes (A111153) and semi-Sophie Germain semiprimes (A111206).

Examples

			a(4)=46 because 46 is the 4th semiprime such that 2*46+1=93 is a semiprime and both of its factors are Sophie Germain primes: 2*2+1=5 and 2*23+1=47.
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_] := AllTrue[{n, 2*n + 1}, PrimeOmega[#] == 2 &] && AllTrue[First /@ FactorInteger[n], PrimeQ[2*# + 1] &]; Select[Range[3000], seqQ] (* Amiram Eldar, May 10 2020 *)

Extensions

Extended by Ray Chandler, Oct 31 2005

A115170 Non-cubefree numbers k such that 2k+1 is also non-cubefree (A046099).

Original entry on oeis.org

40, 256, 312, 472, 688, 904, 1120, 1200, 1312, 1336, 1552, 1768, 1984, 2187, 2200, 2312, 2416, 2456, 2632, 2848, 2875, 3064, 3280, 3312, 3429, 3496, 3712, 3928, 3944, 4144, 4312, 4360, 4576, 4792, 5008, 5224, 5312, 5440, 5562, 5656, 5872, 6088, 6250, 6304, 6312, 6345, 6520, 6655, 6688, 6736, 6952
Offset: 1

Views

Author

Jonathan Vos Post, Mar 03 2006

Keywords

Comments

The probability that a random integer is cubefree is 1/zeta(3) (see A088453).

Examples

			312 is there because 2^3 divides 312 and 5^3 divides 312*2+1.
		

Crossrefs

Cf. A005384 (n and 2n+1 prime), A046099, A088453, A111153 (n and 2n+1 semiprime), A117204 (n and 2n+1 squarefree), A115228.

Programs

  • Mathematica
    noncfQ[n_] := AnyTrue[FactorInteger[n][[;; , 2]], # > 2 &]; Select[Range[7000], noncfQ[#] && noncfQ[2*# + 1] &] (* Amiram Eldar, May 25 2025 *)

Extensions

Edited by Don Reble, Mar 05 2006
2875 inserted by R. J. Mathar, Dec 08 2015

A133123 Double Sophie Germain semiprimes: semiprimes s such that s1=2s+1 and s2=2s1+1 are also semiprimes.

Original entry on oeis.org

38, 46, 106, 129, 133, 145, 169, 201, 203, 235, 289, 291, 298, 334, 335, 381, 407, 417, 458, 489, 497, 529, 538, 579, 583, 597, 623, 626, 649, 685, 689, 694, 707, 758, 767, 781, 815, 898, 899, 921, 926, 959, 995, 1073, 1079, 1082, 1094, 1099, 1139, 1142
Offset: 1

Views

Author

Zak Seidov, Sep 19 2007

Keywords

Comments

Numbers n such that both n and 2n+1 are in A111153.
If 29+30*k, 39+40*k and 47+48*k are all primes then 58+60*k is in the sequence. Thus Dickson's conjecture implies this sequence is infinite. - Robert Israel, Mar 17 2019

Examples

			38=2*19, 2*38+1=77=7*11 and 2*77+1=155=5*31;
129=3*43, 2*129+1=259=7*37 and 2*259+1=519=3*173.
		

Crossrefs

Cf. A111153.

Programs

  • Maple
    filter:= n -> andmap(numtheory:-bigomega=2, [n,2*n+1,4*n+3]):
    select(filter, [$1..2000]); # Robert Israel, Mar 17 2019
  • Mathematica
    fQ[n_]:=2==Plus@@Last/@FactorInteger[n];Select[Range[2000],fQ[ # ]&&fQ[2#+1]&&fQ[4#+3]&]

Formula

n, n1=2n+1 and n2=2n1+1 are semiprimes.

A188059 Numbers k with the property that k, k+1 and 2*k+1 are all semiprimes.

Original entry on oeis.org

25, 34, 38, 57, 93, 118, 133, 145, 177, 201, 205, 213, 218, 298, 334, 361, 381, 394, 446, 501, 633, 694, 698, 842, 865, 878, 898, 921, 1114, 1141, 1226, 1285, 1293, 1465, 1513, 1654, 1713, 1726, 1761, 1857, 1893, 1941, 1981, 2018, 2041, 2217, 2306, 2426, 2433, 2577, 2581, 2734, 2746, 2901, 2973, 3133, 3193, 3214, 3241, 3386, 3578, 3661, 3693, 3746, 3754, 3777, 3826, 3957
Offset: 1

Views

Author

Zak Seidov, Mar 20 2011

Keywords

Comments

Numbers k such that 2k+1 is a semiprime and the sum of two consecutive semiprimes (k and k+1).

Examples

			25 is a term: k = 25 = 5*5, k+1 = 26 = 2*13, 2k+1 = 51 = 3*17.
		

Crossrefs

Cf. A001358 (semiprimes).
Cf. A176896 (safe semiprimes), A111153 (Sophie Germain semiprimes), A070552.

Programs

  • Mathematica
    Select[Range[4000],Union[PrimeOmega[{#,#+1,2 #+1}]]=={2}&] (* Harvey P. Dale, May 11 2012 *)

Formula

Equals A111153 intersect A070552. - M. F. Hasler, Mar 20 2011
Previous Showing 11-20 of 27 results. Next