A290311
Triangle T(n, k) read by rows: row n gives the coefficients of the row polynomials of the (n+1)-th diagonal sequence of the Sheffer triangle A094816 (special Poisson-Charlier).
Original entry on oeis.org
1, 1, 0, 1, 3, -1, 1, 17, -2, -1, 1, 80, 49, -27, 2, 1, 404, 733, -153, -49, 9, 1, 2359, 7860, 1622, -1606, 150, 9, 1, 16057, 80715, 58965, -17840, -3876, 1163, -50, 1, 125656, 858706, 1150722, 47365, -175756, 18239, 2359, -267, 1, 1112064, 9710898, 19571174, 7548463, -3175846, -491809, 194777, -9884, -413
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 1 0
2: 1 3 -1
3: 1 17 -2 -1
4: 1 80 49 -27 2
5: 1 404 733 -153 -49 9
6: 1 2359 7860 1622 -1606 150 9
7: 1 16057 80715 58965 -17840 -3876 1163 -50
8: 1 125656 858706 1150722 47365 -175756 18239 2359 -267
9: 1 1112064 9710898 19571174 7548463 -3175846 -491809 194777 -9884 -413
...
n = 2: the o.g.f. of the third diagonal of triangle A094816, [1, 8, 29, 75, 160, ...] = A290312 is (1 + 3*x - x^2)/(1 - x)^5.
-
rows = 10; nmax = 30(*terms to find every gf*);
T = Table[(-1)^(n - k) Sum[Binomial[-j - 1, -n - 1] StirlingS1[j, k], {j, 0, n}], {n, 0, nmax}, {k, 0, nmax}];
row[n_] := FindGeneratingFunction[Diagonal[T, -n], x] // Numerator // CoefficientList[-#, x]&; row[0] = {1}; row[1] = {1, 0};
Table[row[n], {n, 0, rows-1}] // Flatten (* Jean-François Alcover, Jan 26 2019 *)
A112002
Seventh diagonal of triangle A008275 (Stirling1) and seventh column of |A008276|.
Original entry on oeis.org
720, 13068, 118124, 723680, 3416930, 13339535, 44990231, 135036473, 368411615, 928095740, 2185031420, 4853222764, 10246937272, 20692933630, 40171771630, 75289668850, 136717357942, 241276443496, 414908513800, 696829576300
Offset: 1
-
[StirlingFirst(n+6, n): n in [1..20]]; // Vincenzo Librandi, Aug 09 2015
-
A112002 := proc(n) combinat[stirling1](n+6,n) ; end proc: # R. J. Mathar, Jun 08 2011
-
Table[StirlingS1[n+6, n], {n, 1, 20}] (* Jean-François Alcover, Mar 05 2014 *)
-
[stirling_number1(n,n-6) for n in range(7, 27)] # Zerinvary Lajos, May 16 2009
A135338
Triangle read by rows: row n gives coefficients C(n,j) for a Sheffer sequence (binomial-type) with raising operator -x { 1 + W[ -exp(-2) * (2+D) ] } where W is the Lambert W multi-valued function.
Original entry on oeis.org
1, -1, 1, 1, -3, 1, -2, 7, -6, 1, 6, -20, 25, -10, 1, -24, 76, -105, 65, -15, 1, 120, -364, 511, -385, 140, -21, 1, -720, 2108, -2940, 2401, -1120, 266, -28, 1, 5040, -14328, 19720, -16632, 8841, -2772, 462, -36, 1, -40320, 111816, -151620, 129340, -73605, 27237, -6090, 750, -45, 1
Offset: 1
Triangle read by rows:
1;
-1, 1;
1, -3, 1;
-2, 7, -6, 1;
6, -20, 25, -10, 1;
-24, 76, -105, 65, -15, 1;
120, -364, 511, -385, 140, -21, 1;
-720, 2108, -2940, 2401, -1120, 266, -28, 1;
...
From _R. J. Mathar_, Mar 22 2013: (Start)
The matrix inverse starts:
1;
1, 1;
2, 3, 1;
7, 11, 6, 1;
34, 55, 35, 10, 1;
213, 349, 240, 85, 15, 1;
1630, 2695, 1939, 770, 175, 21, 1;
... (End)
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> `if`(n=0,1,(-1)^n*(n-1)!), 9); # Peter Luschny, Jan 27 2016
-
max = 10; s = Series[Exp[t*(2*x-(1+x)*Log[1+x])], {x, 0, max}, {t, 0, max}] // Normal; c[n_, j_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, j}]*n!; Table[c[n, j], {n, 1, max}, {j, 1, n}] // Flatten (* Jean-François Alcover, Apr 23 2014, after Peter Bala, duplicate of Copeland's e.g.f. *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[Function[n, If[n == 0, 1, (-1)^n (n-1)!]], rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 26 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: (-1)^n*factorial(n-1) if n>0 else 1, 10) # Peter Luschny, Jan 18 2016
A202017
Triangle of coefficients of the numerator polynomials of the rational o.g.f.'s of the diagonals of A059297.
Original entry on oeis.org
1, 2, 3, 9, 4, 52, 64, 5, 195, 855, 625, 6, 606, 6546, 15306, 7776, 7, 1701, 38486, 201866, 305571, 117649, 8, 4488, 194160, 1950320, 6244680, 6806472, 2097152, 9, 11367, 887949, 15597315, 90665595, 200503701, 168205743, 43046721
Offset: 1
Triangle begins
..n\k.|...1.....2......3.......4.......5.......6
= = = = = = = = = = = = = = = = = = = = = = = =
..1..|...2
..2..|...3.....9
..3..|...4....52.....64
..4..|...5...195....855.....625
..5..|...6...606...6546...15306....7776
..6..|...7..1701..38486..201866..305571..117649
...
A288874
Row reversed version of triangle A201637 (second-order Eulerian triangle).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500, 67260, 1004, 1, 0, 3628800, 44339040, 162186912, 238904904, 155357384, 44765000, 5326160, 218848, 2026, 1
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 0 1
2: 0 2 1
3: 0 6 8 1
4: 0 24 58 22 1
5: 0 120 444 328 52 1
6: 0 720 3708 4400 1452 114 1
7: 0 5040 33984 58140 32120 5610 240 1
8: 0 40320 341136 785304 644020 195800 19950 494 1
9: 0 362880 3733920 11026296 12440064 5765500 1062500 67260 1004 1
...
-
T:= (n, k)-> combinat[eulerian2](n, n-k):
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jul 26 2017
# Using the e.g.f:
alias(W = LambertW): len := 10:
egf := (t - 1)*(1/(W(-exp(((t - 1)^2*x - 1)/t)/t) + 1) - 1):
ser := simplify(subs(W(-exp(-1/t)/t) = (-1/t), series(egf, x, len+1))):
seq(seq(n!*coeff(coeff(ser, x, n), t, k), k = 0..n), n = 0..len); # Peter Luschny, Mar 13 2025
-
Table[Boole[n == 0] + Sum[(-1)^(n + k) * Binomial[2 n + 1, k] StirlingS1[2 n - m - k, n - m - k], {k, 0, n - m - 1}], {n, 0, 10}, {m, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 21 2017, after Jean-François Alcover at A201637 *)
A288875
Triangle read by rows. The rows give the coefficients of the numerator polynomials for the o.g.f.s of the diagonal sequences of triangle A028338.
Original entry on oeis.org
1, 1, 1, 3, 8, 1, 15, 71, 33, 1, 105, 744, 718, 112, 1, 945, 9129, 14542, 5270, 353, 1, 10395, 129072, 300291, 191384, 33057, 1080, 1, 135135, 2071215, 6524739, 6338915, 2033885, 190125, 3265, 1, 2027025, 37237680, 150895836, 204889344, 103829590, 18990320, 1038780, 9824, 1
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 1 1
2: 3 8 1
3: 15 71 33 1
4: 105 744 718 112 1
5: 945 9129 14542 5270 353 1
6: 10395 129072 300291 191384 33057 1080 1
7: 135135 2071215 6524739 6338915 2033885 190125 3265 1
8: 2027025 37237680 150895836 204889344 103829590 18990320 1038780 9824 1
...
-
De[d_, t_] := Sum[A028338[d+m, m] t^m, {m, 0, d}]; A028338[n_, k_] := SeriesCoefficient[Times @@ Table[x+i, {i, 1, 2n-1, 2}], {x, 0, k}]; P[n_, x_] := De[n, x] (1-x)^(2n+1); T[n_, m_] := Coefficient[P[n, x], x, m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 24 2017 *)
T[n_,m_]:=Sum[(-1)^(i-n+m)*Binomial[2*n+1,n-m-i]*(1/(2^i*i!)*Sum[(-1)^(i-j)*Binomial[i,j]*(2*j+1)^(n+i),{j,0,i}]),{i,0,n-m}];Flatten[Table[T[n,m],{n,0,8},{m,0,n}]] (* Detlef Meya, Dec 18 2023, after Peter Bala from A214406 *)
A290306
Number of permutations of the multiset {1,1,2,2,...,2n,2n} having exactly n ascents and no number smaller than k between the two occurrences of any number k.
Original entry on oeis.org
1, 2, 58, 4400, 644020, 155357384, 56041398784, 28299910066112, 19076135772884080, 16558710676700081120, 17997592513561138205728, 23948993629880321407298816, 38303802347672648465676584704, 72510806370598644118983905976320, 160368191672482402606757066578885120
Offset: 0
a(1) = 2: 1122, 1221.
a(2) = 58: 11224433, 11244332, 11332244, 11332442, 11334422, 11344322, ..., 44112233, 44112332, 44122133, 44122331, 44123321, 44133122.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270.
-
a:= n-> combinat[eulerian2](2*n, n):
seq(a(n), n=0..20);
# second Maple program:
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, (2*n-k-1)*b(n-1, k-1)+(k+1)*b(n-1, k)))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..20);
-
b[n_, k_]:=b[n, k]=If[k<0 || k>n, 0, If[n==0, 1, (2*n - k - 1)*b[n - 1, k - 1] + (k + 1)*b[n - 1, k]]]; Table[b[2n, n], {n, 0, 20}] (* Indranil Ghosh, Jul 27 2017, after second Maple program *)
Flatten[{1, Table[Sum[(-1)^(n-k) * Binomial[4*n + 1, n - k] * StirlingS1[2*n + k, k], {k, 1, n}], {n, 1, 15}]}] (* Vaclav Kotesovec, Aug 11 2018 *)
A290595
Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A286718 (|S1hat[3,1]| generalized Stirling 1), for n >= 0.
Original entry on oeis.org
1, 1, 2, 4, 19, 4, 28, 222, 147, 8, 280, 3194, 4128, 887, 16, 3640, 55024, 113566, 52538, 4835, 32, 58240, 1107336, 3268788, 2562676, 555684, 25167, 64, 1106560, 25526192, 100544412, 117517960, 45415640, 5301150, 128203, 128, 24344320, 663605680, 3325767376, 5352311764, 3189383200, 695714590, 47537320, 646519, 256, 608608000, 19213911360, 118361719296, 248493947496, 208996478388, 72479948400, 9696965250, 410038434, 3245139, 512
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 2
2: 4 19 4
3: 28 222 147 8
4: 280 3194 4128 887 16
5: 3640 55024 113566 52538 4835 32
6: 58240 1107336 3268788 2562676 555684 25167 6
7: 1106560 25526192 100544412 117517960 45415640 5301150 128203 128
...
n = 8: 24344320 663605680 3325767376 5352311764 3189383200 695714590 47537320 646519 256,
n = 9: 608608000 19213911360 118361719296 248493947496 208996478388 72479948400 9696965250 410038434 3245139 512.
n = 3: The o.g.f. of the 4th diagonal sequence of A286718, [28, 418, 2485, ...] = A024213(n+1), n >= 0, is P(3, x) = (28 + 222*x + 147*x^2 + 8*x^3)/(1 - 3*x)^7.
Comments