cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A360846 Array read by antidiagonals: T(m,n) is the number of dominating induced trees in the grid graph P_m X P_n.

Original entry on oeis.org

1, 3, 3, 4, 8, 4, 4, 17, 17, 4, 4, 32, 65, 32, 4, 4, 66, 222, 222, 66, 4, 4, 130, 766, 1280, 766, 130, 4, 4, 262, 2685, 7629, 7629, 2685, 262, 4, 4, 522, 9450, 46032, 78981, 46032, 9450, 522, 4, 4, 1046, 33158, 278419, 820308, 820308, 278419, 33158, 1046, 4
Offset: 1

Views

Author

Andrew Howroyd, Feb 23 2023

Keywords

Comments

A dominating induced tree in a graph is an acyclic connected induced subgraph whose vertices are a dominating set.

Examples

			Table starts:
=======================================================
m\n| 1   2    3      4       5         6          7 ...
---+---------------------------------------------------
1  | 1   3    4      4       4         4          4 ...
2  | 3   8   17     32      66       130        262 ...
3  | 4  17   65    222     766      2685       9450 ...
4  | 4  32  222   1280    7629     46032     278419 ...
5  | 4  66  766   7629   78981    820308    8520021 ...
6  | 4 130 2685  46032  820308  14605388  259809527 ...
7  | 4 262 9450 278419 8520021 259809527 7904828158 ...
  ...
		

Crossrefs

Main diagonal is A360847.
Rows 1..2 are A113311(n-1), A360848.
Cf. A291872 (connected dominating sets), A360202 (induced trees).

Formula

T(n,m) = T(m,n).

A376782 Triangle read by rows: T(n,m) is the number of unlabeled graphs with n vertices having m minimum forbidden subgraphs, n >= 1, 1 <= m <= A371162(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 4, 4, 2, 1, 4, 8, 13, 8, 1, 4, 5, 7, 20, 34, 31, 28, 12, 8, 5, 0, 1, 1, 4, 5, 13, 26, 33, 43, 59, 50, 62, 58, 60, 64, 67, 63, 70, 68, 65, 61, 60, 31, 28, 16, 8, 13, 4, 4, 4, 0, 2, 1, 0, 1, 1, 4, 6, 9, 21, 34, 39, 71, 74, 77, 99, 118, 124, 107, 129
Offset: 1

Views

Author

Max Alekseyev, Oct 03 2024

Keywords

Examples

			Triangle starts with
n = 1: 1
n = 2: 1 1
n = 3: 1 3
n = 4: 1 4 4  2
n = 5: 1 4 8 13  8
n = 6: 1 4 5  7 20 34 31 28 12 8 5 0 1
...
		

Crossrefs

Cf. A000088 (row sums), A371162 (row lengths), A000012 (column m=1), A113311 (column m=2).

A202241 Array F(n,m) read by antidiagonals: F(0,m)=1, F(n,0) = A130713(n), and column m+1 is recursively defined as the partial sums of column m.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 0, 4, 4, 1, 0, 4, 8, 5, 1, 0, 4, 12, 13, 6, 1, 0, 4, 16, 25, 19, 7, 1, 0, 4, 20, 41, 44, 26, 8, 1, 0, 4, 24, 61, 85, 70, 34, 9, 1, 0, 4, 28, 85, 146, 155, 104, 43, 10, 1, 0, 4, 32, 113, 231, 301, 259, 147, 53, 11, 1, 0, 4, 36, 145, 344, 532, 560, 406, 200, 64, 12, 1
Offset: 0

Views

Author

Paul Curtz, Dec 16 2011

Keywords

Comments

The array F(n,m), beginning with row n=0, is:
1, 1, 1, 1, 1, 1, 1,
2, 3, 4, 5, 6, 7, 8,
1, 4, 8, 13, 19, 26, 34,
0, 4, 12, 25, 44, 70, 104,
0, 4, 16, 41, 85, 155, 259,
0, 4, 20, 61, 146, 301, 560,
0, 4, 24, 85, 231, 532, 1092.
Columns after A130713, A113311, A008574 have signatures (3,-3,1), (4,-6,4,-1), (5,-10,10,-5,1), (6,-15,20,-15,6,-1) (from A135278(n+3)).
Inserting columns of zeros and pushing the columns down, plus alternating sign switches defines the following triangle T(n,2m) = (-1)^(m/2)*F(n-2m,m):
1,
2 0,
1 0 -1,
0 0 -3 0,
0 0 -4 0 1,
0 0 -4 0 4 0,
0 0 -4 0 8 0 -1
The row sums in the triangle are (-1)^n*A099838(n).
The companion to A201863 is
1
1 0
1 0 0
1 0 -2 0
1 0 -4 0 1
1 0 -6 0 5 0
1 0 -8 0 13 0 -2
1 0 -10 0 25 0 -12 0
1 0 -12 0 41 0 -38 0 4
1 0 -14 0 61 0 -88 0 28 0
1 0 -16 0 85 0 -170 0 104 0 -8
5th column: A001844; 7th column: -A035597=-2*A005900(n+1); 9th column: 4*A006325(n+2); 11th column: -8*(1,8,34,104) (from columns 4,5,6,7 of F(n,m)).
As a triangular array, this is the Riordan array ((1+x)^2, x/(1-x)). - Philippe Deléham, Feb 21 2012

Examples

			Triangle T(n,k) begins:
  1
  2, 1
  1, 3,  1
  0, 4,  4,  1
  0, 4,  8,  5,   1
  0, 4, 12, 13,   6,   1
  0, 4, 16, 25,  19,   7,   1
  0, 4, 20, 41,  44,  26,   8,  1
  0, 4, 24, 61,  85,  70,  34,  9,  1
  0, 4, 28, 85, 146, 155, 104, 43, 10, 1
- _Philippe Deléham_, Feb 21 2012
		

Crossrefs

Cf. A130713 (column 0), A113311 (column 1), A008574 (column 2), A001844 (column 3), A005900 (column 4), A006325 (column 5), A033455 (column 6).
Cf. A267633.

Programs

  • GAP
    Flat(List([0..12],n->List([0..n],k->Binomial(n,n-k)+Binomial(n-1,n-k-1)-Binomial(n-2,n-k-2)-Binomial(n-3,n-k-3)))); # Muniru A Asiru, Mar 22 2018
  • Maple
    A130713 := proc(n)
        if n <= 2 and n >=0 then
            op(n+1,[1,2,1]) ;
        else
            0;
        end if;
    end proc:
    A202241 := proc(n,m)
        option remember;
        if n < 0 then
            0 ;
        elif m = 0 then
            A130713(n);
        else
            procname(n,m-1)+procname(n-1,m) ;
        end if;
    end proc:
    for d from 0 to 12 do
        for m from 0 to d do
            printf("%d,",A202241(d-m,m)) ;
        end do:
    end do: # R. J. Mathar, Dec 22 2011
    C := proc (n, k) if 0 <= k and k <= n then factorial(n)/(factorial(k)*factorial(n-k)) else 0 end if end proc:
    for n from 0 to 10 do
         seq(C(n, n-k) + C(n-1, n-k-1) - C(n-2, n-k-2) - C(n-3, n-k-3), k = 0..n);
    end do; # Peter Bala, Mar 20 2018
  • Mathematica
    rows = 12;
    T[0] = PadRight[{1, 2, 1}, rows];
    T[n_ /; nJean-François Alcover, Jun 29 2019 *)
  • Sage
    def Trow(n): return [binomial(n, n-k) + binomial(n-1, n-k-1) - binomial(n-2, n-k-2) - binomial(n-3, n-k-3) for k in (0..n)]
    for n in (0..9): print(Trow(n)) # Peter Luschny, Mar 21 2018
    

Formula

F(1,m) = m+2.
F(2,m) = A034856(m+1).
F(3,m) = A000297(m-1).
Sum_{m=0..d} F(d-m,m) = A116453(d-3), d >= 3 (antidiagonal sums).
As a triangular array T(n,k), 0 <= k <= n, satisfies: T(n,k) = T(n-1,k) + T(n-1,k-1) with T(0,0) = 1, T(1,0) = 2, T(2,0) = 1, T(3,0) = 0. - Philippe Deléham, Feb 21 2012
Unsigned diagonals of A267633 (beginning with its main diagonal) appear to be the reverse rows of this entry's triangle beginning with the fourth row. - Tom Copeland, Jan 26 2016
T(n,k) = C(n, n-k) + C(n-1, n-k-1) - C(n-2, n-k-2) - C(n-3, n-k-3), where C(n, k) = n!/(k!*(n-k)!) if 0 <= k <= n, otherwise 0. - Peter Bala, Mar 20 2018

A122431 Riordan array ((1+x)^3,x).

Original entry on oeis.org

1, 3, 1, 3, 3, 1, 1, 3, 3, 1, 0, 1, 3, 3, 1, 0, 0, 1, 3, 3, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Sep 04 2006

Keywords

Comments

Row sums are A115291. Diagonal sums are A113311. Inverse is A122432. Sequence array for C(3,n).

Examples

			Triangle begins
1,
3,1,
3,3,1,
1,3,3,1,
0,1,3,3,1,
0,0,1,3,3,1,
0,0,0,1,3,3,1,
0,0,0,0,1,3,3,1
		

Formula

Number triangle T(n,k)=C(3,n-k)

A171445 Expansion of g.f. (1+z)^(24)/(1-z).

Original entry on oeis.org

1, 25, 301, 2325, 12951, 55455, 190051, 536155, 1271626, 2579130, 4540386, 7036530, 9740686, 12236830, 14198086, 15505590, 16241061, 16587165, 16721761, 16764265, 16774891, 16776915, 16777191, 16777215, 16777216, 16777216
Offset: 0

Views

Author

Richard Choulet, Dec 09 2009

Keywords

Comments

a(n)=2^(24)=16777216 for n>=24. We observe that this sequence is the transform of A171443 by the iterated T^(16) of T such that: T(u_0,u_1,u_2,u_3,u_4,u_5,...)=(u_0,u_0+u_1,u_1+u_2,u_2+u_3,u_3+u_4,...).

Examples

			a(3) = C(25,3)+C(25,3-2) = 2325.
		

Crossrefs

Programs

  • Maple
    m:=25:for n from 0 to 40 do a(n):=sum('binomial(m,n-2*k)',k=0..floor(n/2)): od : seq(a(n),n=0..40);
  • Mathematica
    CoefficientList[Series[(1+x)^24/(1-x),{x,0,30}],x] (* Harvey P. Dale, Jun 11 2019 *)

Formula

With m=25, a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k).

A207327 Riordan array (1, x*(1+x)^2/(1-x)).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 4, 6, 1, 0, 4, 17, 9, 1, 0, 4, 32, 39, 12, 1, 0, 4, 48, 111, 70, 15, 1, 0, 4, 64, 240, 268, 110, 18, 1, 0, 4, 80, 432, 769, 530, 159, 21, 1, 0, 4, 96, 688, 1792, 1905, 924, 217, 24, 1, 0, 4
Offset: 0

Views

Author

Philippe Deléham, Feb 17 2012

Keywords

Comments

Triangle T(n,k), read by rows, given by (0, 3, -5/3, 4/15, -3/5, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are A077995(n).

Examples

			Triangle begins :
1
0, 1
0, 3, 1
0, 4, 6, 1
0, 4, 17, 9, 1
0, 4, 32, 39, 12, 1
0, 4, 48, 111, 70, 15, 1
0, 4, 64, 240, 268, 110, 18, 1
0, 4, 80, 432, 769, 530, 159, 21, 1
0, 4, 96, 688, 1792, 1905, 924, 217, 24, 1
0, 4, 112, 1008, 3584, 5503, 3999, 1477, 284, 27, 1
0, 4, 128, 1392, 6400, 13440, 13842, 7483, 2216, 360, 30, 1
		

Crossrefs

Cf. Diagonals : A000012, A008585, A022266, A000007, A113311

Formula

T(2*n,n) = A119259(n).
G.f.: (1-x)/(1-(1+y)*x-2*y*x^2-y*x^3).
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1) + T(n-3,k-1), T(0,0) = 1, T(1,0) = 0.

A267649 a(0) = a(1) = 2 then a(n) = 4 for n>=2.

Original entry on oeis.org

2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Natan Arie Consigli, Jan 19 2016

Keywords

Comments

Decimal expansion of 101/450.
Also list of smallest n-composites.
A hyperoperator aggregation b[n]c is n-composite if b,c are positive non-right-identity elements.
The identity elements are:
Hyper-0 (zeration): none.
Hyper-1 (addition): 0.
Hyper-2 (multiplication): 1.
Hyper-3 (exponentiation): 1.
Hyper-n (n>2): 1.
For more information on hyperoperations see A054871.
Essentially the same as A255176, A151798, A123932, A113311, A040002 and A010709. - R. J. Mathar, May 25 2023
Continued fraction expansion of 2 + sqrt(1/5) = 2 + sqrt(5)/5. - Elmo R. Oliveira, Aug 06 2024

Examples

			a(0) = 2 because 1 is the smallest non-identity element in zeration and 1[0]1=2;
a(1) = 2 because 1 is the smallest non-identity element in addition and 1[1]1=2;
a(2) = 4 because 2 is the smallest non-identity element in multiplication and 2[2]2=4;
a(3) = 4 because 2 is the smallest non-identity element in exponentiation and 2[2]2=4;
a(4) = 4 because 2 is the smallest non-identity element in titration and 2[2]2=4;
Etc.
		

Crossrefs

Cf. A000027 (1-composites), A002808 (composites), A267647 (3-composites), A097374 (4-composites).

Formula

a(n) = a[n]b where a,b are the positive smallest non-right-identity elements.
From Elmo R. Oliveira, Aug 06 2024: (Start)
G.f.: 4/(1 - x) - 2*(1 + x).
E.g.f.: 4*exp(x) - 2*(1 + x). (End)
Previous Showing 21-27 of 27 results.