cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A352522 Triangle read by rows where T(n,k) is the number of integer compositions of n with k weak nonexcedances (parts on or below the diagonal).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 3, 4, 3, 3, 1, 3, 4, 8, 6, 6, 4, 1, 4, 7, 12, 13, 12, 10, 5, 1, 5, 13, 16, 26, 24, 22, 15, 6, 1, 7, 19, 27, 43, 48, 46, 37, 21, 7, 1, 10, 26, 47, 68, 90, 93, 83, 58, 28, 8, 1, 14, 36, 77, 109, 159, 180, 176, 141
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
   1
   0   1
   1   0   1
   1   1   1   1
   1   3   1   2   1
   2   3   4   3   3   1
   3   4   8   6   6   4   1
   4   7  12  13  12  10   5   1
   5  13  16  26  24  22  15   6   1
   7  19  27  43  48  46  37  21   7   1
  10  26  47  68  90  93  83  58  28   8   1
For example, row n = 6 counts the following compositions:
  (6)   (15)   (114)  (123)   (1113)   (11112)  (111111)
  (24)  (42)   (132)  (1311)  (1122)   (11121)
  (33)  (51)   (141)  (2112)  (1131)   (11211)
        (231)  (213)  (2121)  (1212)   (12111)
               (222)  (2211)  (1221)
               (312)  (3111)  (21111)
               (321)
               (411)
		

Crossrefs

Row sums are A011782.
The strong version for partitions is A114088.
The opposite version for partitions is A115994.
The version for permutations is A123125, strong A173018.
Column k = 0 is A238874.
The corresponding rank statistic is A352515.
The strong version is A352521, first column A219282, rank statistic A352514.
The strong opposite is A352524, first col A008930, rank statistic A352516.
The opposite version is A352525, first col A177510, rank statistic A352517.
A000041 counts integer partitions, strict A000009.
A008292 is the triangle of Eulerian numbers (version without zeros).
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352488 lists the weak nonexcedance set of A122111.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pw[y_]:=Length[Select[Range[Length[y]],#>=y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pw[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>=i,x,1)*v[j-i])); r+=v); [Vecrev(p) | p<-r]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023

A352830 Numbers whose weakly increasing prime indices y have no fixed points y(i) = i.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A325128 in lacking 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The terms together with their prime indices begin:
      1: {}        35: {3,4}     69: {2,9}     105: {2,3,4}
      3: {2}       37: {12}      71: {20}      107: {28}
      5: {3}       39: {2,6}     73: {21}      109: {29}
      7: {4}       41: {13}      77: {4,5}     111: {2,12}
     11: {5}       43: {14}      79: {22}      113: {30}
     13: {6}       47: {15}      83: {23}      115: {3,9}
     15: {2,3}     49: {4,4}     85: {3,7}     119: {4,7}
     17: {7}       51: {2,7}     87: {2,10}    121: {5,5}
     19: {8}       53: {16}      89: {24}      123: {2,13}
     21: {2,4}     55: {3,5}     91: {4,6}     127: {31}
     23: {9}       57: {2,8}     93: {2,11}    129: {2,14}
     25: {3,3}     59: {17}      95: {3,8}     131: {32}
     29: {10}      61: {18}      97: {25}      133: {4,8}
     31: {11}      65: {3,6}    101: {26}      137: {33}
     33: {2,5}     67: {19}     103: {27}      139: {34}
		

Crossrefs

* = unproved
These partitions are counted by A238394, strict A025147.
These are the zeros of A352822.
*The reverse version is A352826, counted by A064428 (strict A352828).
*The complement reverse version is A352827, counted by A001522.
The complement is A352872, counted by A238395.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==0&]

A352872 Numbers whose weakly increasing prime indices y have a fixed point y(i) = i.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A118672 in having 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      2: {1}           28: {1,1,4}         56: {1,1,1,4}
      4: {1,1}         30: {1,2,3}         58: {1,10}
      6: {1,2}         32: {1,1,1,1,1}     60: {1,1,2,3}
      8: {1,1,1}       34: {1,7}           62: {1,11}
      9: {2,2}         36: {1,1,2,2}       63: {2,2,4}
     10: {1,3}         38: {1,8}           64: {1,1,1,1,1,1}
     12: {1,1,2}       40: {1,1,1,3}       66: {1,2,5}
     14: {1,4}         42: {1,2,4}         68: {1,1,7}
     16: {1,1,1,1}     44: {1,1,5}         70: {1,3,4}
     18: {1,2,2}       45: {2,2,3}         72: {1,1,1,2,2}
     20: {1,1,3}       46: {1,9}           74: {1,12}
     22: {1,5}         48: {1,1,1,1,2}     75: {2,3,3}
     24: {1,1,1,2}     50: {1,3,3}         76: {1,1,8}
     26: {1,6}         52: {1,1,6}         78: {1,2,6}
     27: {2,2,2}       54: {1,2,2,2}       80: {1,1,1,1,3}
For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
		

Crossrefs

* = unproved
These partitions are counted by A238395, strict A096765.
These are the nonzero positions in A352822.
*The complement reverse version is A352826, counted by A064428.
*The reverse version is A352827, counted by A001522 (strict A352829).
The complement is A352830, counted by A238394 (strict A025147).
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>0&]

A352521 Triangle read by rows where T(n,k) is the number of integer compositions of n with k strong nonexcedances (parts below the diagonal).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 0, 4, 5, 3, 3, 1, 0, 6, 8, 7, 6, 4, 1, 0, 9, 12, 15, 12, 10, 5, 1, 0, 13, 19, 27, 25, 22, 15, 6, 1, 0, 18, 32, 43, 51, 46, 37, 21, 7, 1, 0, 25, 51, 70, 94, 94, 83, 58, 28, 8, 1, 0, 35, 77, 117, 162, 184, 176, 141, 86, 36, 9, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
   1
   1   0
   1   1   0
   2   1   1   0
   3   2   2   1   0
   4   5   3   3   1   0
   6   8   7   6   4   1   0
   9  12  15  12  10   5   1   0
  13  19  27  25  22  15   6   1   0
  18  32  43  51  46  37  21   7   1   0
  25  51  70  94  94  83  58  28   8   1   0
For example, row n = 6 counts the following compositions (empty column indicated by dot):
  (6)    (51)   (312)   (1113)   (11112)  (111111)  .
  (15)   (114)  (411)   (1122)   (11121)
  (24)   (132)  (1131)  (2112)   (11211)
  (33)   (141)  (1212)  (2121)   (21111)
  (42)   (213)  (1221)  (3111)
  (123)  (222)  (1311)  (12111)
         (231)  (2211)
         (321)
		

Crossrefs

Row sums are A011782.
The version for partitions is A114088.
Row sums without the last term are A131577.
The version for permutations is A173018.
Column k = 0 is A219282.
The corresponding rank statistic is A352514.
The weak version is A352522, first column A238874, rank statistic A352515.
The opposite version is A352524, first column A008930, rank stat A352516.
The weak opposite version is A352525, first col A177510, rank stat A352517.
A008292 is the triangle of Eulerian numbers (version without zeros).
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352490 is the strong nonexcedance set of A122111.
A352523 counts comps by nonfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pa[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>i,x,1)*v[j-i])); r+=v); vector(#v, i, Vecrev(r[i], i))}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023

Extensions

Terms a(66) and beyond from Andrew Howroyd, Jan 19 2023

A352524 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k excedances (parts above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 6, 9, 1, 11, 18, 3, 21, 35, 8, 41, 67, 20, 80, 131, 44, 1, 157, 257, 94, 4, 310, 505, 197, 12, 614, 996, 406, 32, 1218, 1973, 825, 80, 2421, 3915, 1669, 186, 1, 4819, 7781, 3364, 415, 5, 9602, 15486, 6762, 901, 17, 19147, 30855, 13567, 1918, 49
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
     1
     1
     1     1
     2     2
     3     5
     6     9     1
    11    18     3
    21    35     8
    41    67    20
    80   131    44     1
   157   257    94     4
   310   505   197    12
   614   996   406    32
For example, row n = 5 counts the following compositions:
  (113)    (5)     (23)
  (122)    (14)
  (1112)   (32)
  (1121)   (41)
  (1211)   (131)
  (11111)  (212)
           (221)
           (311)
           (2111)
		

Crossrefs

The version for permutations is A008292, weak A123125.
Column k = 0 is A008930.
Row sums are A011782.
The opposite version for partitions is A114088.
The weak version for partitions is A115994.
Column k = 1 is A351983.
The corresponding rank statistic is A352516.
The opposite version is A352521, first col A219282, rank statistic A352514.
The weak opposite version is A352522, first col A238874, rank stat A352515.
The weak version is A352525, first col (k = 1) A177510, rank stat A352517.
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352487 lists the excedance set of A122111, opposite A352490.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pd[y_]:=Length[Select[Range[Length[y]],#
    				
  • PARI
    S(v,u)={vector(#v, k, sum(i=1, k-1, v[k-i]*u[i]))}
    T(n)={my(v=vector(1+n), s); v[1]=1; s=v; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1))); s+=v); [Vecrev(p) | p<-s]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 02 2023

A352828 Number of strict integer partitions y of n with no fixed points y(i) = i.

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19, 22, 26, 32, 38, 46, 56, 66, 78, 92, 106, 123, 142, 162, 186, 214, 244, 280, 322, 368, 422, 484, 552, 630, 718, 815, 924, 1046, 1180, 1330, 1498, 1682, 1888, 2118, 2372, 2656, 2972, 3322, 3712, 4146, 4626
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(12) = 12 partitions (A-C = 10..12; empty column indicated by dot; 0 is the empty partition):
   0  .  2  3    4    5    6    7    8     9     A      B      C
            21   31   41   51   43   53    54    64     65     75
                                61   71    63    73     74     84
                                     431   81    91     83     93
                                           432   532    A1     B1
                                           531   541    542    642
                                                 631    632    651
                                                 4321   641    732
                                                        731    741
                                                        5321   831
                                                               5421
                                                               6321
		

Crossrefs

The version for permutations is A000166, complement A002467.
The reverse version is A025147, complement A238395, non-strict A238394.
The non-strict version is A064428 (unproved, ranked by A352826 or A352873).
The version for compositions is A238351, complement A352875.
The complement is A352829, non-strict A001522 (unproved, ranked by A352827 or A352874).
A000041 counts partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902.
A008290 counts permutations by fixed points, unfixed A098825.
A115720 and A115994 count partitions by their Durfee square.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]==0&]],{n,0,30}]

Formula

G.f.: Sum_{n>=0} q^(n*(3*n+1)/2)*Product_{k=1..n} (1+q^k)/(1-q^k). - Jeremy Lovejoy, Sep 26 2022

A352833 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k fixed points, k = 0, 1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 5, 8, 7, 12, 10, 16, 14, 23, 19, 30, 26, 42, 35, 54, 47, 73, 62, 94, 82, 124, 107, 158, 139, 206, 179, 260, 230, 334, 293, 420, 372, 532, 470, 664, 591, 835, 740, 1034, 924, 1288, 1148, 1588, 1422, 1962, 1756, 2404, 2161
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2022

Keywords

Comments

A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists, so all columns k > 1 are zeros.
Conjecture:
(1) This is A064428 interleaved with A001522.
(2) Reversing rows gives A300788, the strict version of A300787.

Examples

			Triangle begins:
  0: {1,0}
  1: {0,1}
  2: {1,1}
  3: {2,1}
  4: {3,2}
  5: {4,3}
  6: {6,5}
  7: {8,7}
  8: {12,10}
  9: {16,14}
For example, row n = 7 counts the following partitions:
  (7)       (52)
  (61)      (421)
  (511)     (322)
  (43)      (3211)
  (4111)    (2221)
  (331)     (22111)
  (31111)   (1111111)
  (211111)
		

Crossrefs

Row sums are A000041.
The version for permutations is A008290, for nonfixed points A098825.
The columns appear to be A064428 and A001522.
The version counting strong nonexcedances is A114088.
The version for compositions is A238349, rank statistic A352512.
The version for reversed partitions is A238352.
Reversing rows appears to give A300788, the strict case of A300787.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 and A115994 count partitions by their Durfee square.
A330644 counts non-self-conjugate partitions, ranked by A352486.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],pq[#]==k&]],{n,0,15},{k,0,1}]

A352490 Nonexcedance set of A122111. Numbers k > A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 50, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 140, 144, 150, 160, 162, 168, 180, 192, 196, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 315, 320, 324, 336, 352, 360, 375, 378
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than that of their conjugate.

Examples

			The terms together with their prime indices begin:
    4: (1,1)
    8: (1,1,1)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   24: (2,1,1,1)
   27: (2,2,2)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   60: (3,2,1,1)
   64: (1,1,1,1,1,1)
For example, the partition (4,4,1,1) has Heinz number 196 and its conjugate (4,2,2,2) has Heinz number 189, and 196 > 189, so 196 is in the sequence, and 189 is not.
		

Crossrefs

These partitions are counted by A000701.
The opposite version is A352487, weak A352489.
The weak version is A352488, counted by A046682.
These are the positions of positive terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) > A122111(a(n)).

A352514 Number of strong nonexcedances (parts below the diagonal) of the n-th composition in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2, 3, 1, 2, 3, 4, 3, 4, 4, 5, 0, 1, 0, 2, 0, 1, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.

Examples

			The 83rd composition in standard order is (2,3,1,1), with strong nonexcedances {3,4}, so a(83) = 2.
		

Crossrefs

Positions of first appearances are A000225.
The weak version is A352515, counted by A352522 (first column A238874).
The opposite version is A352516, counted by A352524 (first column A008930).
The weak opposite version is A352517, counted by A352525 (first A177510).
The triangle A352521 counts these compositions (first column A219282).
A008292 is the triangle of Eulerian numbers (version without zeros).
A011782 counts compositions.
A173018 counts permutations by number of excedances, weak A123125.
A238349 counts comps by fixed parts, first col A238351, rank stat A352512.
A352490 is the (strong) nonexcedance set of A122111.
A352523 counts comps by unfixed parts, first col A010054, rank stat A352513.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[pa[stc[n]],{n,0,30}]

A352487 Excedance set of A122111. Numbers k < A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is less than that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   5: (3)
   7: (4)
  10: (3,1)
  11: (5)
  13: (6)
  14: (4,1)
  15: (3,2)
  17: (7)
  19: (8)
  21: (4,2)
  22: (5,1)
  23: (9)
  25: (3,3)
  26: (6,1)
  28: (4,1,1)
For example, the partition (4,1,1) has Heinz number 28 and its conjugate (3,1,1,1) has Heinz number 40, and 28 < 40, so 28 is in the sequence, and 40 is not.
		

Crossrefs

These partitions are counted by A000701.
The weak version is A352489, counted by A046682.
The opposite version is A352490, weak A352488.
These are the positions of negative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A238744 = partition conjugate of prime signature, ranked by A238745.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352521 counts compositions by subdiagonals, rank statistic A352514.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#
    				

Formula

a(n) < A122111(a(n)).
Previous Showing 11-20 of 39 results. Next