cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 160 results. Next

A376307 Run-sums of the sequence of first differences of squarefree numbers.

Original entry on oeis.org

2, 2, 2, 3, 1, 2, 2, 6, 2, 6, 2, 2, 2, 2, 2, 2, 2, 3, 1, 4, 6, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 3, 1, 3, 1, 4, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 6, 2, 6, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 6, 2, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2024

Keywords

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
  (1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with sums A376307 (this sequence).
		

Crossrefs

Run-sums of first differences of A005117.
Before taking run-sums we had A076259, ones A375927.
For the squarefree numbers themselves we have A373413.
For prime instead of squarefree numbers we have A373822, halved A373823.
For compression instead of run-sums we have A376305, ones A376342.
For run-lengths instead of run-sums we have A376306.
For prime-powers instead of squarefree numbers we have A376310.
For positions of first appearances instead of run-sums we have A376311.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Total/@Split[Differences[Select[Range[100],SquareFreeQ]]]

A376308 Run-compression of the sequence of first differences of prime-powers.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 4, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 4, 2, 6, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 8, 5, 1, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 4, 2, 4, 6, 2, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Sep 20 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of prime-powers (A246655) is:
  2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
  1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
The run-compression is A376308 (this sequence).
		

Crossrefs

For primes instead of prime-powers we have A037201, halved A373947.
For squarefree numbers instead of prime-powers we have A376305.
For run-lengths instead of compression we have A376309.
For run-sums instead of compression we have A376310.
For positions of first appearances we have A376341, sorted A376340.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A024619 and A361102 list non-prime-powers, differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.
A373948 encodes compression using compositions in standard order.

Programs

  • Mathematica
    First/@Split[Differences[Select[Range[100],PrimePowerQ]]]

A325282 Maximum adjusted frequency depth among integer partitions of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The term "frequency depth" appears to have been coined by Clark Kimberling in A225485 and A225486, and can be applied to both integers (A323014) and integer partitions (A325280).
Run lengths are A325258, i.e., first differences of Levine's sequence A011784 (except at n = 1).

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Max@@fdadj/@IntegerPartitions[n],{n,0,30}]

Formula

a(0) = 0; a(1) = 1; a(n > 1) = A225486(n).

A361860 Number of integer partitions of n whose median part is the smallest.

Original entry on oeis.org

1, 2, 2, 4, 4, 7, 8, 12, 15, 21, 25, 36, 44, 58, 72, 95, 117, 150, 185, 235, 289, 362, 441, 550, 670, 824, 1000, 1223, 1476, 1795, 2159, 2609, 3126, 3758, 4485, 5369, 6388, 7609, 9021, 10709, 12654, 14966, 17632, 20782, 24414, 28684, 33601, 39364, 45996
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (4111)     (611)
                                     (3111)    (22111)    (2222)
                                     (21111)   (31111)    (5111)
                                     (111111)  (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For mean instead of median we have A000005.
For length instead of median we have A006141.
For maximum instead of median we have A053263.
For half-median we have A361861.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Min@@#==Median[#]&]],{n,30}]

A127002 Number of partitions of n that have the form a+a+b+c where a,b,c are distinct.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 4, 3, 7, 8, 11, 11, 17, 17, 23, 23, 30, 31, 39, 38, 48, 49, 58, 58, 70, 70, 82, 82, 95, 96, 110, 109, 125, 126, 141, 141, 159, 159, 177, 177, 196, 197, 217, 216, 238, 239, 260, 260, 284, 284, 308, 308, 333, 334, 360, 359, 387, 388, 415, 415, 445
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2007

Keywords

Comments

From Gus Wiseman, Apr 19 2019: (Start)
Also the number of integer partitions of n - 4 of the form a+b, a+a+b, or a+a+b+c, ignoring ordering. A bijection can be constructed from the partitions described in the name by subtracting one from all parts and deleting zeros. These are also partitions with adjusted frequency depth (A323014, A325280) equal to their length plus one, and their Heinz numbers are given by A325281. For example, the a(7) = 1 through a(13) = 11 partitions are:
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(221) (411) (61) (71) (72)
(311) (322) (332) (81)
(331) (422) (441)
(511) (611) (522)
(3211) (3221) (711)
(4211) (3321)
(4221)
(4311)
(5211)
(End)

Examples

			a(10) counts these partitions: {1,1,2,6}, (1,1,3,5), {2,2,1,5}.
a(11) counts {1,1,2,7}, {1,1,3,6}, {1,1,4,5}, {2,2,1,6}, {2,2,3,4}, {3,3,1,4}, {4,4,1,2}
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(7) = 1 through a(13) = 11 partitions of the form a+a+b+c are the following. The Heinz numbers of these partitions are given by A085987.
  (3211)  (3221)  (3321)  (5221)  (4322)  (4332)  (4432)
          (4211)  (4221)  (5311)  (4331)  (4431)  (5332)
                  (4311)  (6211)  (4421)  (5322)  (5422)
                  (5211)          (5411)  (5331)  (5521)
                                  (6221)  (6411)  (6322)
                                  (6311)  (7221)  (6331)
                                  (7211)  (7311)  (6511)
                                          (8211)  (7411)
                                                  (8221)
                                                  (8311)
                                                  (9211)
(End)
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); [0,0,0,0,0,0] cat Coefficients(R!( x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, May 30 2019
    
  • Maple
    g:=sum(sum(sum(x^(i+j+k)*(x^i+x^j+x^k),i=1..j-1),j=2..k-1),k=3..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=1..65); # Emeric Deutsch, Jan 05 2007
    isA127002 := proc(p) local s; if nops(p) = 4 then s := convert(p,set) ; if nops(s) = 3 then RETURN(1) ; else RETURN(0) ; fi ; else RETURN(0) ; fi ; end:
    A127002 := proc(n) local part,res,p; part := combinat[partition](n) ; res := 0 ; for p from 1 to nops(part) do res := res+isA127002(op(p,part)) ; od ; RETURN(res) ; end:
    for n from 1 to 200 do print(A127002(n)) ; od ; # R. J. Mathar, Jan 07 2007
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Sort[Length/@Split[#]]=={1,1,2}&]],{n,70}] (* Gus Wiseman, Apr 19 2019 *)
    Rest[CoefficientList[Series[x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)), {x,0,70}], x]] (* G. C. Greubel, May 30 2019 *)
  • PARI
    my(x='x+O('x^70)); concat(vector(6), Vec(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)))) \\ G. C. Greubel, May 30 2019
    
  • Sage
    a=(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 70).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 30 2019

Formula

G.f.: x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)) - Vladeta Jovovic, Jan 03 2007
G.f.: Sum_{k>=3} Sum_{j=2..k-1} Sum_{m=1..j-1} x^(m+j+k)*(x^m +x^j +x^k). - Emeric Deutsch, Jan 05 2007
a(n) = binomial(floor((n-1)/2),2) - floor((n-1)/3) - floor((n-1)/4) + floor(n/4). - Mircea Merca, Nov 23 2013
a(n) = A005044(n-4) + 2*A005044(n-3) + 3*A005044(n-2). - R. J. Mathar, Nov 23 2013

A235998 Triangle read by rows: T(n,k) is the number of compositions of n having k distinct parts (n>=1, 1<=k<=floor((sqrt(1+8*n)-1)/2)).

Original entry on oeis.org

1, 2, 2, 2, 3, 5, 2, 14, 4, 22, 6, 2, 44, 18, 4, 68, 56, 3, 107, 146, 4, 172, 312, 24, 2, 261, 677, 84, 6, 396, 1358, 288, 2, 606, 2666, 822, 4, 950, 5012, 2226, 4, 1414, 9542, 5304, 120, 5, 2238, 17531, 12514, 480, 2, 3418, 32412, 27904, 1800, 6, 5411, 58995, 61080, 5580
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2014

Keywords

Comments

Row n has length A003056(n) hence the first element of column k is in row A000217(k).
The equivalent sequence for partitions is A116608.
For the number of compositions of n see A011782.
For the connection to overcompositions see A235999.
Row sums give A011782(n), n >= 1.
First column is A000005, second column is A131661.
T(k*(k+1)/2,k) = T(A000217(k),k) = A000142(k) = k!. - Alois P. Heinz, Jan 20 2014

Examples

			Triangle begins:
  1;
  2;
  2,    2;
  3,    5;
  2,   14;
  4,   22,     6;
  2,   44,    18;
  4,   68,    56;
  3,  107,   146;
  4,  172,   312,    24;
  2,  261,   677,    84;
  6,  396,  1358,   288;
  2,  606,  2666,   822;
  4,  950,  5012,  2226;
  4, 1414,  9542,  5304,  120;
  5, 2238, 17531, 12514,  480;
  2, 3418, 32412, 27904, 1800;
  6, 5411, 58995, 61080, 5580;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
          expand(add(b(n-i*j, i-1, p+j)/j!*`if`(j=0, 1, x), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 0)):
    seq(T(n), n=1..25); # Alois P. Heinz, Jan 20 2014, revised May 25 2014
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, Sum[b[n-i*j, i-1, p+ j]/j!*If[j==0, 1, x], {j, 0, n/i}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 1, 25}] // Flatten (* Jean-François Alcover, Dec 10 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jan 19 2014

A360247 Numbers for which the prime indices have the same mean as the distinct prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 121, 122, 123, 125, 127, 128, 129, 130
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A072774 in having 90.
First differs from A242414 in lacking 126.
Includes all squarefree numbers and perfect powers.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 900 are {3,3,2,2,1,1} with mean 2, and the distinct prime indices are {1,2,3} also with mean 2, so 900 is in the sequence.
		

Crossrefs

Signature instead of parts: A324570, counted by A114638.
Signature instead of distinct parts: A359903, counted by A360068.
These partitions are counted by A360243.
The complement is A360246, counted by A360242.
For median instead of mean the complement is A360248, counted by A360244.
For median instead of mean we have A360249, counted by A360245.
For greater instead of equal mean we have A360252, counted by A360250.
For lesser instead of equal mean we have A360253, counted by A360251.
A008284 counts partitions by number of parts, distinct A116608.
A058398 counts partitions by mean, also A327482.
A088529/A088530 gives mean of prime signature (A124010).
A112798 lists prime indices, length A001222, sum A056239.
A316413 = numbers whose prime indices have integer mean, distinct A326621.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.

Programs

  • Maple
    isA360247 := proc(n)
        local ifs,pidx,pe,meanAll,meanDist ;
        if n = 1 then
            return true ;
        end if ;
        ifs := ifactors(n)[2] ;
        # list of prime indices with multiplicity
        pidx := [] ;
        for pe in ifs do
            [numtheory[pi](op(1,pe)),op(2,pe)] ;
            pidx := [op(pidx),%] ;
        end do:
        meanAll := add(op(1,pe)*op(2,pe),pe=pidx) / add(op(2,pe),pe=pidx) ;
        meanDist := add(op(1,pe),pe=pidx) / nops(pidx) ;
        if meanAll = meanDist then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 130 do
        if isA360247(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==Mean[Union[prix[#]]]&]

A378622 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the strict partition numbers A000009.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 0, -1, -2, -3, 3, 1, 1, 2, 4, 7, 4, 1, 0, -1, -3, -7, -14, 5, 1, 0, 0, 1, 4, 11, 25, 6, 1, 0, 0, 0, -1, -5, -16, -41, 8, 2, 1, 1, 1, 1, 2, 7, 23, 64, 10, 2, 0, -1, -2, -3, -4, -6, -13, -36, -100, 12, 2, 0, 0, 1, 3, 6, 10, 16, 29, 65, 165
Offset: 0

Views

Author

Gus Wiseman, Dec 13 2024

Keywords

Examples

			As a table (read by antidiagonals downward):
        n=0:  n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:
  ----------------------------------------------------------
  k=0:   1     1     1     2     2     3     4     5     6
  k=1:   0     0     1     0     1     1     1     1     2
  k=2:   0     1    -1     1     0     0     0     1     0
  k=3:   1    -2     2    -1     0     0     1    -1     0
  k=4:  -3     4    -3     1     0     1    -2     1     1
  k=5:   7    -7     4    -1     1    -3     3     0    -3
  k=6: -14    11    -5     2    -4     6    -3    -3     7
  k=7:  25   -16     7    -6    10    -9     0    10   -14
  k=8: -41    23   -13    16   -19     9    10   -24    24
  k=9:  64   -36    29   -35    28     1   -34    48   -34
As a triangle (read by rows):
   1
   1   0
   1   0   0
   2   1   1   1
   2   0  -1  -2  -3
   3   1   1   2   4   7
   4   1   0  -1  -3  -7 -14
   5   1   0   0   1   4  11  25
   6   1   0   0   0  -1  -5 -16 -41
   8   2   1   1   1   1   2   7  23  64
		

Crossrefs

Rows are: A000009 (k=0), A087897 (k=1, without first term), A378972 (k=2).
For primes we have A095195 or A376682.
For partitions we have A175804.
First column is A293467 (up to sign).
For composites we have A377033.
For squarefree numbers we have A377038.
For nonsquarefree numbers we have A377046.
For prime powers we have A377051.
Position of first zero in each row is A377285.
Triangle's row-sums are A378970, absolute A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A325245 Number of integer partitions of n with adjusted frequency depth 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 8, 11, 11, 19, 17, 25, 29, 37, 37, 56, 53, 75, 80, 99, 103, 145, 143, 181, 199, 247, 255, 336, 339, 426, 459, 548, 590, 738, 759, 916, 999, 1192, 1259, 1529, 1609, 1915, 2083, 2406, 2589, 3085, 3267, 3809, 4134, 4763, 5119, 5964
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014.

Examples

			The a(3) = 1 through a(10) = 11 partitions:
  (21)  (31)  (32)  (42)    (43)   (53)    (54)      (64)
              (41)  (51)    (52)   (62)    (63)      (73)
                    (321)   (61)   (71)    (72)      (82)
                    (2211)  (421)  (431)   (81)      (91)
                                   (521)   (432)     (532)
                                   (3311)  (531)     (541)
                                           (621)     (631)
                                           (222111)  (721)
                                                     (3322)
                                                     (4321)
                                                     (4411)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==3&]],{n,0,30}]

A367582 Triangle read by rows where T(n,k) is the number of integer partitions of n whose multiset multiplicity kernel (in which each multiplicity becomes the least element of that multiplicity), sums to k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 1, 4, 3, 3, 2, 1, 0, 1, 3, 5, 4, 4, 3, 1, 1, 0, 1, 2, 6, 4, 8, 3, 3, 2, 1, 0, 1, 3, 7, 9, 6, 7, 4, 3, 1, 1, 0, 1, 1, 8, 7, 11, 9, 9, 4, 3, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2023

Keywords

Comments

We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets, MMK is represented by A367579, and as an operation on their Heinz numbers, it is represented by A367580.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  2  1  1
  0  1  1  2  2  1
  0  1  3  3  2  1  1
  0  1  1  4  3  3  2  1
  0  1  3  5  4  4  3  1  1
  0  1  2  6  4  8  3  3  2  1
  0  1  3  7  9  6  7  4  3  1  1
  0  1  1  8  7 11  9  9  4  3  2  1
  0  1  5 10 11 13 10 11  6  5  3  1  1
  0  1  1 10 11 17 14 18 10  9  4  3  2  1
  0  1  3 12 17 19 18 22 14 12  8  4  3  1  1
  0  1  3 12 15 27 19 31 19 19 10  9  5  3  2  1
  0  1  4 15 23 27 31 33 24 26 18 12  8  4  3  1  1
  0  1  1 14 20 35 33 48 32 37 25 20 11 10  4  3  2  1
Row n = 7 counts the following partitions:
  (1111111)  (61)  (421)     (52)     (4111)  (511)  (7)
                   (2221)    (331)    (322)   (43)
                   (22111)   (31111)  (3211)
                   (211111)
		

Crossrefs

Column k = 2 is A000005(n) - 1 = A032741(n).
Row sums are A000041.
The case of constant partitions is A051731, row sums A000005.
The corresponding rank statistic is A367581, row sums of A367579.
A072233 counts partitions by number of parts.
A091602 counts partitions by greatest multiplicity, least A243978.
A116608 counts partitions by number of distinct parts.
A116861 counts partitions by sum of distinct parts.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q,#]==i&], {i,mts}]]];
    Table[Length[Select[IntegerPartitions[n], Total[mmk[#]]==k&]], {n,0,10}, {k,0,n}]
Previous Showing 61-70 of 160 results. Next