A116639
Numbers n such that 13^n == 15 (mod n).
Original entry on oeis.org
1, 2, 14, 22, 1582, 11266, 52766, 76202, 100562, 494371, 641141, 1698494, 66593158, 469296521, 10917186079, 12062558662, 4928050067287, 5315948729617, 29841213777637, 113215787397262, 778590786358582, 787324867879046
Offset: 1
Cf.
A116609,
A116611,
A116620,
A116621,
A116622,
A116629,
A116630,
A116631,
A116632,
A116636,
A116638.
-
Select[Range[25000000],PowerMod[13,#,# ]==15&] (* Harvey P. Dale, Feb 03 2009 *)
a(14)-a(22) from
Max Alekseyev, May 04 2010, Apr 29 2014, Oct 15 2016
A295532
Positive integers n such that 13^n == 8 (mod n).
Original entry on oeis.org
1, 5, 371285, 3957661, 70348567451, 42831939409247
Offset: 1
Sequences 13^n == k (mod n):
A116621 (k=1),
A116622 (k=2),
A116629 (k=3),
A116630 (k=4),
A116611 (k=5),
A116631 (k=6),
A116632 (k=7), this sequence (k=8),
A116636 (k=9),
A116620 (k=10),
A116638 (k=11),
A116639 (k=15).
-
Join[{1, 5}, Select[Range[4000000], PowerMod[13, #, #] == 8 &]] (* Robert Price, Apr 10 2020 *)
A014960
Integers n such that n divides 24^n - 1.
Original entry on oeis.org
1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1
Prime factors are listed in
A087807.
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014959 (b=22).
-
s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)
Edited and terms a(13) onward added by
Max Alekseyev, Nov 16 2019
A014956
Positive integers k such that k divides 14^k - 1.
Original entry on oeis.org
1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A128360.
-
Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)
A014957
Positive integers k that divide 16^k - 1.
Original entry on oeis.org
1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A014956,
A177805,
A177807,
A128358,
A128360
-
Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
-
A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021
A333432
A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 0, 2, 3, 2, 5, 2, 7, 2, ...
3, 0, 4, 9, 4, 25, 3, 49, 4, ...
4, 0, 8, 21, 6, 125, 4, 343, 8, ...
5, 0, 16, 27, 8, 625, 6, 889, 10, ...
6, 0, 20, 63, 12, 1555, 8, 2359, 16, ...
7, 0, 32, 81, 16, 3125, 9, 2401, 20, ...
8, 0, 40, 147, 18, 7775, 12, 6223, 32, ...
9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
Columns k=1-20 give:
A000027,
A063524,
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A333506,
A128360.
-
A:= proc() local h, p; p:= proc() [1] end;
proc(n, k) if k=2 then `if`(n=1, 1, 0) else
while nops(p(k)) 1 do od;
p(k):= [p(k)[], h]
od; p(k)[n] fi
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Mar 24 2020
-
A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
A014959
Integers k such that k divides 22^k - 1.
Original entry on oeis.org
1, 3, 7, 9, 21, 27, 39, 49, 63, 81, 117, 147, 189, 243, 273, 343, 351, 441, 507, 567, 729, 819, 1029, 1053, 1143, 1323, 1521, 1701, 1911, 2187, 2401, 2457, 2943, 3081, 3087, 3159, 3429, 3549, 3969, 4401, 4563, 5103, 5733, 6561, 6591, 7203, 7371
Offset: 1
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014960 (b=24).
-
nxt[{n_,s_}]:={n+1,s+(n+1)*22^n}; Transpose[Select[NestList[nxt,{1,1},7500], Divisible[ Last[#],First[#]]&]][[1]] (* Harvey P. Dale, Jan 27 2015 *)
A321364
Positive integers m such that 13^m == 12 (mod m).
Original entry on oeis.org
1, 13757837, 6969969233, 514208575135
Offset: 1
Solutions to 13^m == k (mod m):
A001022 (k=0),
A015963 (k=-1),
A116621 (k=1),
A116622 (k=2),
A116629 (k=3),
A116630 (k=4),
A116611 (k=5),
A116631 (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620(k=10),
A116638 (k=11), this sequence (k=12),
A321365 (k=14),
A116639 (k=15).
A321365
Positive integers n such that 13^n == 14 (mod n).
Original entry on oeis.org
1, 5805311, 392908759, 399614833907, 2674764845549, 21997277871211, 67146783889057
Offset: 1
Solutions to 13^n == k (mod n):
A001022 (k=0),
A015963 (k=-1),
A116621 (k=1),
A116622 (k=2),
A116629 (k=3),
A116630 (k=4),
A116611 (k=5),
A116631 (k=6),
A116632 (k=7),
A295532 (k=8),
A116636 (k=9),
A116620(k=10),
A116638 (k=11),
A321364 (k=12), this sequence (k=14),
A116639 (k=15).
A333413
Positive integers k such that k divides 13^k + 2.
Original entry on oeis.org
1, 3, 5, 185, 2199, 14061, 5672119, 6719547, 192178873, 913591893, 4589621727, 9762178659, 1157052555699
Offset: 1
Solutions to 13^k == m (mod k): this sequence (m = -2),
A015963 (m = -1),
A116621 (m = 1),
A116622 (m = 2),
A116629 (m = 3),
A116630 (m = 4),
A116611 (m = 5),
A116631 (m = 6),
A116632 (m = 7),
A295532 (m = 8),
A116636 (m = 9),
A116620 (m = 10),
A116638 (m = 11),
A116639 (k = 15).
-
Select[Range[100000], Divisible[PowerMod[13, #, #] + 2, #] &] (* Jinyuan Wang, Mar 28 2020 *)
-
for(k=1, 1e6, if(Mod(13, k)^k==-2, print1(k", ")))
Comments