cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A334433 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 22, 27, 30, 28, 36, 40, 48, 64, 17, 35, 33, 26, 45, 50, 42, 44, 54, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 34, 75, 63, 70, 66, 52, 81, 90, 100, 84, 88, 108, 120, 112, 144, 160, 192, 256
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2020

Keywords

Comments

First differs from A334435 at a(75) = 99, A334435(75) = 98.
A permutation of the positive integers.
This is the Abramowitz-Stegun ordering of integer partitions when the parts are read in the usual (weakly decreasing) order. The case of reversed (weakly increasing) partitions is A185974.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       42: {1,2,4}
    2: {1}           13: {6}               44: {1,1,5}
    3: {2}           25: {3,3}             54: {1,2,2,2}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           22: {1,5}             56: {1,1,1,4}
    6: {1,2}         27: {2,2,2}           72: {1,1,1,2,2}
    8: {1,1,1}       30: {1,2,3}           80: {1,1,1,1,3}
    7: {4}           28: {1,1,4}           96: {1,1,1,1,1,2}
    9: {2,2}         36: {1,1,2,2}        128: {1,1,1,1,1,1,1}
   10: {1,3}         40: {1,1,1,3}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       49: {4,4}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     55: {3,5}
   11: {5}           17: {7}               39: {2,6}
   15: {2,3}         35: {3,4}             34: {1,7}
   14: {1,4}         33: {2,5}             75: {2,3,3}
   18: {1,2,2}       26: {1,6}             63: {2,2,4}
   20: {1,1,3}       45: {2,2,3}           70: {1,3,4}
   24: {1,1,1,2}     50: {1,3,3}           66: {1,2,5}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  22  27  30  28  36  40  48  64
  17  35  33  26  45  50  42  44  54  60  56  72  80  96 128
This corresponds to the tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(21)(111)
        (4)(22)(31)(211)(1111)
  (5)(32)(41)(221)(311)(2111)(11111)
		

Crossrefs

Row lengths are A000041.
Compositions under the same order are A124734 (triangle).
The version for reversed (weakly increasing) partitions is A185974.
The constructive version is A334301.
Ignoring length gives A334434, or A334437 for reversed partitions.
The dual version (sum/length/revlex) is A334438.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in increasing-length reverse-lexicographic order (sum/length/revlex) are A334439 (not A036037).

Programs

  • Mathematica
    Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n]],{n,0,8}]

Formula

A001222(a(n)) = A036043(n).

A334302 Irregular triangle read by rows where row k is the k-th reversed integer partition, if reversed partitions are sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 5, 2, 3, 1, 4, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 1, 5, 2, 2, 2, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 3, 4, 2, 5, 1, 6, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2020

Keywords

Examples

			The sequence of all reversed partitions begins:
  ()         (1,4)        (1,1,1,1,2)
  (1)        (1,2,2)      (1,1,1,1,1,1)
  (2)        (1,1,3)      (7)
  (1,1)      (1,1,1,2)    (3,4)
  (3)        (1,1,1,1,1)  (2,5)
  (1,2)      (6)          (1,6)
  (1,1,1)    (3,3)        (2,2,3)
  (4)        (2,4)        (1,3,3)
  (2,2)      (1,5)        (1,2,4)
  (1,3)      (2,2,2)      (1,1,5)
  (1,1,2)    (1,2,3)      (1,2,2,2)
  (1,1,1,1)  (1,1,4)      (1,1,2,3)
  (5)        (1,1,2,2)    (1,1,1,4)
  (2,3)      (1,1,1,3)    (1,1,1,2,2)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
                            0
                           (1)
                        (2) (1,1)
                    (3) (1,2) (1,1,1)
            (4) (2,2) (1,3) (1,1,2) (1,1,1,1)
  (5) (2,3) (1,4) (1,2,2) (1,1,3) (1,1,1,2) (1,1,1,1,1)
Showing partitions as their Heinz numbers (see A334435) gives:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  22  27  30  28  36  40  48  64
  17  35  33  26  45  50  42  44  54  60  56  72  80  96 128
		

Crossrefs

Row lengths are A036043.
Lexicographically ordered reversed partitions are A026791.
The dual ordering (sum/length/lex) of reversed partitions is A036036.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Lexicographically ordered partitions are A193073.
Graded Heinz numbers are A215366.
Ignoring length gives A228531.
Sorting partitions by Heinz number gives A296150.
The version for compositions is A296774.
The dual ordering (sum/length/lex) of non-reversed partitions is A334301.
Taking Heinz numbers gives A334435.
The version for regular (non-reversed) partitions is A334439 (not A036037).

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

A334435 Heinz numbers of all reversed integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 22, 27, 30, 28, 36, 40, 48, 64, 17, 35, 33, 26, 45, 50, 42, 44, 54, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 34, 75, 63, 70, 66, 52, 81, 90, 100, 84, 88, 108, 120, 112, 144, 160, 192, 256
Offset: 0

Views

Author

Gus Wiseman, May 02 2020

Keywords

Comments

First differs from A334433 at a(75) = 99, A334433(75) = 98.
First differs from A334436 at a(22) = 22, A334436(22) = 27.
A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers.
This is the Abramowitz-Stegun ordering of reversed partitions (A185974) except that the finer order is reverse-lexicographic instead of lexicographic. The version for non-reversed partitions is A334438.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       42: {1,2,4}
    2: {1}           13: {6}               44: {1,1,5}
    3: {2}           25: {3,3}             54: {1,2,2,2}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           22: {1,5}             56: {1,1,1,4}
    6: {1,2}         27: {2,2,2}           72: {1,1,1,2,2}
    8: {1,1,1}       30: {1,2,3}           80: {1,1,1,1,3}
    7: {4}           28: {1,1,4}           96: {1,1,1,1,1,2}
    9: {2,2}         36: {1,1,2,2}        128: {1,1,1,1,1,1,1}
   10: {1,3}         40: {1,1,1,3}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       49: {4,4}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     55: {3,5}
   11: {5}           17: {7}               39: {2,6}
   15: {2,3}         35: {3,4}             34: {1,7}
   14: {1,4}         33: {2,5}             75: {2,3,3}
   18: {1,2,2}       26: {1,6}             63: {2,2,4}
   20: {1,1,3}       45: {2,2,3}           70: {1,3,4}
   24: {1,1,1,2}     50: {1,3,3}           66: {1,2,5}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  22  27  30  28  36  40  48  64
  17  35  33  26  45  50  42  44  54  60  56  72  80  96 128
This corresponds to the following tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(12)(111)
        (4)(22)(13)(112)(1111)
  (5)(23)(14)(122)(113)(1112)(11111)
		

Crossrefs

Row lengths are A000041.
The dual version (sum/length/lex) is A185974.
Compositions under the same order are A296774 (triangle).
The constructive version is A334302.
Ignoring length gives A334436.
The version for non-reversed partitions is A334438.
Partitions in this order (sum/length/revlex) are A334439.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic (sum/colex) order are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

Formula

A001222(a(n)) = A036043(n).

A334438 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 25, 28, 30, 27, 40, 36, 48, 64, 17, 26, 33, 35, 44, 42, 50, 45, 56, 60, 54, 80, 72, 96, 128, 19, 34, 39, 55, 49, 52, 66, 70, 63, 75, 88, 84, 100, 90, 81, 112, 120, 108, 160, 144, 192, 256
Offset: 0

Views

Author

Gus Wiseman, May 03 2020

Keywords

Comments

First differs from A185974 shifted left once at a(76) = 99, A185974(75) = 98.
A permutation of the positive integers.
This is the Abramowitz-Stegun ordering of integer partitions (A334433) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334435.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       50: {1,3,3}
    2: {1}           13: {6}               45: {2,2,3}
    3: {2}           22: {1,5}             56: {1,1,1,4}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           25: {3,3}             54: {1,2,2,2}
    6: {1,2}         28: {1,1,4}           80: {1,1,1,1,3}
    8: {1,1,1}       30: {1,2,3}           72: {1,1,1,2,2}
    7: {4}           27: {2,2,2}           96: {1,1,1,1,1,2}
   10: {1,3}         40: {1,1,1,3}        128: {1,1,1,1,1,1,1}
    9: {2,2}         36: {1,1,2,2}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       34: {1,7}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     39: {2,6}
   11: {5}           17: {7}               55: {3,5}
   14: {1,4}         26: {1,6}             49: {4,4}
   15: {2,3}         33: {2,5}             52: {1,1,6}
   20: {1,1,3}       35: {3,4}             66: {1,2,5}
   18: {1,2,2}       44: {1,1,5}           70: {1,3,4}
   24: {1,1,1,2}     42: {1,2,4}           63: {2,2,4}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
This corresponds to the following tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(21)(111)
        (4)(31)(22)(211)(1111)
  (5)(41)(32)(311)(221)(2111)(11111)
		

Crossrefs

Row lengths are A000041.
Ignoring length gives A129129.
Compositions under the same order are A296774 (triangle).
The dual version (sum/length/lex) is A334433.
The version for reversed partitions is A334435.
The constructive version is A334439 (triangle).
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

Formula

A001221(a(n)) = A103921(n).
A001222(a(n)) = A036043(n).

A049085 Irregular table T(n,k) = maximal part of the k-th partition of n, when listed in Abramowitz-Stegun order (as in A036043).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 3, 4, 3, 2, 3, 2, 2, 1, 7, 6, 5, 4, 5, 4, 3, 3, 4, 3, 2, 3, 2, 2, 1, 8, 7, 6, 5, 4, 6, 5, 4, 4, 3, 5, 4, 3, 3, 2, 4, 3, 2, 3, 2, 2, 1, 9, 8, 7, 6, 5, 7, 6, 5, 4, 5, 4, 3, 6, 5, 4, 4, 3, 3, 5, 4, 3, 3, 2, 4, 3, 2, 3, 2, 2, 1, 10, 9, 8, 7, 6, 5, 8, 7, 6
Offset: 0

Views

Author

Keywords

Comments

a(0) = 0 by convention. - Franklin T. Adams-Watters, Jun 24 2014
Like A036043 this is important for calculating sequences defined over the numeric partitions, cf. A000041. For example, the triangular array A019575 can be calculated using A036042 and this sequence.
The row sums are A006128. - Johannes W. Meijer, Jun 21 2010
The name is correct if the partitions are read in reverse, so that the parts are weakly increasing. The version for non-reversed partitions is A334441. - Gus Wiseman, May 21 2020

Examples

			Rows:
  [0];
  [1];
  [2,1];
  [3,2,1];
  [4,3,2,2,1];
  [5,4,3,3,2,2,1];
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.

Crossrefs

Row lengths are A000041.
Row sums are A006128.
The length of the partition is A036043.
The number of distinct elements of the partition is A103921.
The Heinz number of the partition is A185974.
The version ignoring length is A194546.
The version for non-reversed partitions is A334441.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order are A036036.
Reverse-lexicographically ordered partitions are A080577.
Partitions in Abramowitz-Stegun order are A334301.

Programs

  • Maple
    with(combinat):
    nmax:=9:
    for n from 1 to nmax do
       y(n):=numbpart(n):
       P(n):=partition(n):
       for k from 1 to y(n) do
          B(k):=P(n)[k]
       od:
       for k from 1 to y(n) do
          s:=0: j:=0:
          while sJohannes W. Meijer, Jun 21 2010
  • Mathematica
    Table[If[n==0,{0},Max/@Sort[Reverse/@IntegerPartitions[n]]],{n,0,8}] (* Gus Wiseman, May 21 2020 *)
  • PARI
    A049085(n,k)=if(n,partitions(n)[k][1],0) \\ M. F. Hasler, Jun 06 2018

Extensions

More terms from Wolfdieter Lang, Apr 28 2005
a(0) inserted by Franklin T. Adams-Watters, Jun 24 2014

A103921 Irregular triangle T(n,m) (n >= 0) read by rows: row n lists numbers of distinct parts of partitions of n in Abramowitz-Stegun order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 2, 3, 1, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 1, 2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 3
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

T(n, m) is the number of distinct parts of the m-th partition of n in Abramowitz-Stegun order; n >= 0, m = 1..p(n) = A000041(n).
The row length sequence of this table is p(n)=A000041(n) (number of partitions).
In order to count distinct parts of a partition consider the partition as a set instead of a multiset. E.g., n=6: read [1,1,1,3] as {1,3} and count the elements, here 2.
Rows are the same as the rows of A115623, but in reverse order.
From Wolfdieter Lang, Mar 17 2011: (Start)
The number of 1s in row number n, n >= 1, is tau(n)=A000005(n), the number of divisors of n.
For the proof read off the divisors d(n,j), j=1..tau(n), from row number n of table A027750, and translate them to the tau(n) partitions d(n,1)^(n/d(n,1)), d(n,2)^(n/d(n,2)),..., d(n,tau(n))^(n/d(n,tau(n))).
See a comment by Giovanni Resta under A000005. (End)
From Gus Wiseman, May 20 2020: (Start)
The name is correct if integer partitions are read in reverse, so that the parts are weakly increasing. The non-reversed version is A334440.
Also the number of distinct parts of the n-th integer partition in lexicographic order (A193073).
Differs from the number of distinct parts in the n-th integer partition in (sum/length/revlex) order (A334439). For example, (6,2,2) has two distinct elements, while (1,4,5) has three.
(End)

Examples

			Triangle starts:
  0,
  1,
  1, 1,
  1, 2, 1,
  1, 2, 1, 2, 1,
  1, 2, 2, 2, 2, 2, 1,
  1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1,
  1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1,
  1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 2, 3, 1, 2, 3, 2, 2, 2, 2, 1,
  1, 2, 2, 2, 2, ...
a(5,4)=2 from the fourth partition of 5 in the mentioned order, i.e., (1^2,3), which has two distinct parts, namely 1 and 3.
		

Crossrefs

Row sums are A000070.
Row lengths are A000041.
The lengths of these partitions are A036043.
The maxima of these partitions are A049085.
The version for non-reversed partitions is A334440.
The version for colex instead of lex is (also) A334440.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order are A036036.
Reverse-lexicographically ordered partitions are A080577.
Compositions in Abramowitz-Stegun order are A124734.

Programs

  • Mathematica
    Join@@Table[Length/@Union/@Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 20 2020 *)

Formula

a(n) = A001221(A185974(n)). - Gus Wiseman, May 20 2020

Extensions

Edited by Franklin T. Adams-Watters, May 29 2006

A296774 Triangle read by rows in which row n lists the compositions of n ordered first by length and then reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 2, 3, 1, 4, 3, 1, 1, 2, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2017

Keywords

Examples

			Triangle of compositions begins:
(1),
(2),(11),
(3),(21),(12),(111),
(4),(31),(22),(13),(211),(121),(112),(1111),
(5),(41),(32),(23),(14),(311),(221),(212),(131),(122),(113),(2111),(1211),(1121),(1112),(11111).
		

Crossrefs

Programs

  • Mathematica
    Table[Sort[Join@@Permutations/@IntegerPartitions[n],Or[Length[#1]
    				

A334436 Heinz numbers of all reversed integer partitions sorted first by sum and then reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 27, 22, 30, 28, 36, 40, 48, 64, 17, 35, 33, 45, 26, 50, 42, 54, 44, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 75, 63, 81, 34, 70, 66, 90, 52, 100, 84, 108, 88, 120, 112, 144, 160, 192, 256
Offset: 0

Views

Author

Gus Wiseman, May 02 2020

Keywords

Comments

First differs from A334435 at a(22) = 27, A334435(22) = 22.
A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers. For non-reversed partitions, see A129129 and A228531.
This is the so-called "Mathematica" order (A080577).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       42: {1,2,4}
    2: {1}           13: {6}               54: {1,2,2,2}
    3: {2}           25: {3,3}             44: {1,1,5}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           27: {2,2,2}           56: {1,1,1,4}
    6: {1,2}         22: {1,5}             72: {1,1,1,2,2}
    8: {1,1,1}       30: {1,2,3}           80: {1,1,1,1,3}
    7: {4}           28: {1,1,4}           96: {1,1,1,1,1,2}
    9: {2,2}         36: {1,1,2,2}        128: {1,1,1,1,1,1,1}
   10: {1,3}         40: {1,1,1,3}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       49: {4,4}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     55: {3,5}
   11: {5}           17: {7}               39: {2,6}
   15: {2,3}         35: {3,4}             75: {2,3,3}
   14: {1,4}         33: {2,5}             63: {2,2,4}
   18: {1,2,2}       45: {2,2,3}           81: {2,2,2,2}
   20: {1,1,3}       26: {1,6}             34: {1,7}
   24: {1,1,1,2}     50: {1,3,3}           70: {1,3,4}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  27  22  30  28  36  40  48  64
  17  35  33  45  26  50  42  54  44  60  56  72  80  96 128
This corresponds to the following tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(12)(111)
        (4)(22)(13)(112)(1111)
  (5)(23)(14)(122)(113)(1112)(11111)
		

Crossrefs

Row lengths are A000041.
Compositions under the same order are A066099 (triangle).
The version for non-reversed partitions is A129129.
The constructive version is A228531.
The lengths of these partitions are A333486.
The length-sensitive version is A334435.
The dual version (sum/lex) is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Times@@Prime/@#&/@Reverse[Sort[Sort/@IntegerPartitions[n],lexsort]],{n,0,8}]

Formula

A001222(a(n)) = A333486(n).

A227736 Irregular table read by rows: the first entry of n-th row is length of run of rightmost identical bits (either 0 or 1, equal to n mod 2), followed by length of the next run of bits, etc., in the binary representation of n, when scanned from the least significant to the most significant end.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 3, 4, 4, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 3, 1, 1, 3, 1, 4, 5, 5, 1, 1, 4, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2013

Keywords

Comments

Row n has A005811(n) terms. In rows 2^(k-1)..2^k-1 we have all the compositions (ordered partitions) of k. Other orderings of compositions: A101211 (same with rows reversed), A066099, A108244 and A124734.
Each row n >= 1 contains the initial A005811(n) nonzero terms from the beginning of row n of A227186. A070939(n) gives the sum of terms on row n, while A167489(n) gives the product of its terms. A136480 gives the first column. A101211 lists the terms of each row in reverse order.

Examples

			Table begins as:
  Row  n in    Terms on
   n   binary  that row
   1      1    1;
   2     10    1,1;
   3     11    2;
   4    100    2,1;
   5    101    1,1,1;
   6    110    1,2;
   7    111    3;
   8   1000    3,1;
   9   1001    1,2,1;
  10   1010    1,1,1,1;
  11   1011    2,1,1;
  12   1100    2,2;
  13   1101    1,1,2;
  14   1110    1,3;
  15   1111    4;
  16  10000    4,1;
etc. with the terms of row n appearing in reverse order compared how the runs of the same length appear in the binary expansion of n (Cf. A101211).
From _Omar E. Pol_, Sep 08 2013: (Start)
Illustration of initial terms:
  ---------------------------------------
  k   m     Diagram        Composition
  ---------------------------------------
  .          _
  1   1     |_|_           1;
  2   1     |_| |          1, 1,
  2   2     |_ _|_         2;
  3   1     |_  | |        2, 1,
  3   2     |_|_| |        1, 1, 1,
  3   3     |_|   |        1, 2,
  3   4     |_ _ _|_       3;
  4   1     |_    | |      3, 1,
  4   2     |_|_  | |      1, 2, 1,
  4   3     |_| | | |      1, 1, 1, 1,
  4   4     |_ _|_| |      2, 1, 1,
  4   5     |_  |   |      2, 2,
  4   6     |_|_|   |      1, 1, 2,
  4   7     |_|     |      1, 3,
  4   8     |_ _ _ _|_     4;
  5   1     |_      | |    4, 1,
  5   2     |_|_    | |    1, 3, 1,
  5   3     |_| |   | |    1, 1, 2, 1,
  5   4     |_ _|_  | |    2, 2, 1,
  5   5     |_  | | | |    2, 1, 1, 1,
  5   6     |_|_| | | |    1, 1, 1, 1, 1,
  5   7     |_|   | | |    1, 2, 1, 1,
  5   8     |_ _ _|_| |    3, 1, 1,
  5   9     |_    |   |    3, 2,
  5  10     |_|_  |   |    1, 2, 2,
  5  11     |_| | |   |    1, 1, 1, 2,
  5  12     |_ _|_|   |    2, 1, 2,
  5  13     |_  |     |    2, 3,
  5  14     |_|_|     |    1, 1, 3,
  5  15     |_|       |    1, 4,
  5  16     |_ _ _ _ _|    5;
.
Also irregular triangle read by rows in which row k lists the compositions of k, k >= 1.
Triangle begins:
 [1];
 [1,1], [2];
 [2,1], [1,1,1], [1,2],[3];
 [3,1], [1,2,1], [1,1,1,1], [2,1,1], [2,2], [1,1,2], [1,3], [4];
 [4,1], [1,3,1], [1,1,2,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], [1,2,1,1], [3,1,1], [3,2], [1,2,2], [1,1,1,2], [2,1,2], [2,3], [1,1,3], [1,4], [5];
Row k has length A001792(k-1).
Row sums give A001787(k), k >= 1.
(End)
		

Crossrefs

Cf. A227738 and also A227739 for similar table for unordered partitions.
Cf. A101211 (rows in reversed order).

Programs

  • Haskell
    import Data.List (group)
    a227736 n k = a227736_tabf !! (n-1) !! (k-1)
    a227736_row n = a227736_tabf !! (n-1)
    a227736_tabf = map (map length . group) $ tail a030308_tabf
    -- Reinhard Zumkeller, Aug 11 2014
    
  • Mathematica
    Array[Length /@ Reverse@ Split@ IntegerDigits[#, 2] &, 34] // Flatten (* Michael De Vlieger, Dec 11 2020 *)
  • PARI
    apply( {A227736_row(n, r=[1], b=n%2)=while(n\=2, n%2==b && r[#r]++ || [b=1-b, r=concat(r,1)]); r}, [1..22]) \\ M. F. Hasler, Mar 11 2025
    
  • Python
    def A227736_row(n): return[len(list(g))for _,g in groupby(bin(n)[:1:-1])]
    from itertools import groupby # M. F. Hasler, Mar 11 2025
  • Scheme
    (define (A227736 n) (A227186bi (A227737 n) (A227740 n))) ;; The Scheme-function for A227186bi has been given in A227186.
    

Formula

a(n) = A227186(A227737(n), A227740(n)).
a(n) = A101211(A227741(n)).

A334442 Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 3, 4, 1, 1, 5
Offset: 0

Views

Author

Gus Wiseman, May 07 2020

Keywords

Comments

First differs from A036036 for reversed partitions of 9. Namely, this sequence has (2,2,5) before (1,4,4), while A036036 has (1,4,4) before (2,2,5).

Examples

			The sequence of all partitions begins:
  ()         (2,3)        (1,1,1,1,2)    (1,1,1,2,2)
  (1)        (1,1,3)      (1,1,1,1,1,1)  (1,1,1,1,1,2)
  (2)        (1,2,2)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (1,1,1,2)    (1,6)          (8)
  (3)        (1,1,1,1,1)  (2,5)          (1,7)
  (1,2)      (6)          (3,4)          (2,6)
  (1,1,1)    (1,5)        (1,1,5)        (3,5)
  (4)        (2,4)        (1,2,4)        (4,4)
  (1,3)      (3,3)        (1,3,3)        (1,1,6)
  (2,2)      (1,1,4)      (2,2,3)        (1,2,5)
  (1,1,2)    (1,2,3)      (1,1,1,4)      (1,3,4)
  (1,1,1,1)  (2,2,2)      (1,1,2,3)      (2,2,4)
  (5)        (1,1,1,3)    (1,2,2,2)      (2,3,3)
  (1,4)      (1,1,2,2)    (1,1,1,1,3)    (1,1,1,5)
This sequence can also be interpreted as the following triangle:
                  0
                 (1)
               (2)(11)
             (3)(12)(111)
        (4)(13)(22)(112)(1111)
  (5)(14)(23)(113)(122)(1112)(11111)
Taking Heinz numbers (A334438) gives:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
		

Crossrefs

Row lengths are A036043.
The version for reversed partitions is A334301.
The version for colex instead of revlex is A334302.
Taking Heinz numbers gives A334438.
The version with rows reversed is A334439.
Ignoring length gives A335122.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				
  • PARI
    A334442_row(n)=vecsort(partitions(n),p->concat(#p,-Vecrev(p))) \\ Rows of triangle defined in EXAMPLE (all partitions of n). Wrap into [Vec(p)|p<-...] to avoid "Vecsmall". - M. F. Hasler, May 14 2020
Previous Showing 11-20 of 46 results. Next