cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 81 results. Next

A300483 a(n) = 2 * Integral_{t>=0} T_n((t+1)/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 2, 3, 10, 47, 256, 1610, 11628, 95167, 871450, 8833459, 98233158, 1189398050, 15578268382, 219483388403, 3310225751098, 53214450175743, 908397242172212, 16411016615547530, 312824583201360248, 6274726126933368879, 132115002152296986730, 2913432246090160413827
Offset: 0

Views

Author

Max Alekseyev, Mar 06 2018

Keywords

Comments

For any integer n>=0, 2 * Integral_{t=-1..1} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1/2..1/2} T_n(z)*exp(-2*z)*dz = A300485(n)*exp(1) - a(n)*exp(-1).

Crossrefs

Row m=1 in A300480.

Programs

  • Maple
    seq(2*int(orthopoly[T](n,(t+1)/2)*exp(-t),t=0..infinity),n=0..50); # Robert Israel, Mar 06 2018
  • Mathematica
    a[n_] := 2 Integrate[ChebyshevT[n, (t + 1)/2] Exp[-t], {t, 0, Infinity}];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 28 2019 *)
  • PARI
    { A300483(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x+1)/2)), x, 1); }

Formula

a(n) = Sum_{i=0..n} A127672(n,i) * A000522(i).
a(n) = A300480(1,n) = A300481(-1,n).
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Apr 15 2020

A300485 a(n) = 2 * Integral_{t>=0} T_n((t-1)/2) * exp(-t) * dt, n>=0, where T_n(x) is n-th Chebyshev polynomial of first kind.

Original entry on oeis.org

2, 0, -1, 2, 7, 34, 218, 1574, 12879, 117938, 1195479, 13294412, 160967522, 2108289364, 29703846535, 447990339602, 7201792686815, 122938198060734, 2220989581865882, 42336203570931402, 849191837620701239, 17879821236086808098
Offset: 0

Views

Author

Max Alekseyev, Mar 06 2018

Keywords

Comments

For any integer n>=0, 2 * Integral_{t=-1..1} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1/2..1/2} T_n(z)*exp(-2*z)*dz = a(n)*exp(1) - A300483(n)*exp(-1).

Crossrefs

Row m=1 in A300481.

Programs

  • PARI
    { A300485(n) = if(n==0, return(2)); subst( serlaplace( 2*polchebyshev(n, 1, (x-1)/2)), x, 1); }

Formula

a(n) = Sum_{i=0..n} A127672(n,i) * A000166(i).
a(n) = A300481(1,n) = A300480(-1,n).

A225975 Square root of A226008(n).

Original entry on oeis.org

0, 2, 2, 6, 1, 10, 6, 14, 4, 18, 10, 22, 3, 26, 14, 30, 8, 34, 18, 38, 5, 42, 22, 46, 12, 50, 26, 54, 7, 58, 30, 62, 16, 66, 34, 70, 9, 74, 38, 78, 20, 82, 42, 86, 11, 90, 46, 94, 24, 98, 50, 102, 13, 106, 54, 110, 28, 114, 58
Offset: 0

Views

Author

Paul Curtz, May 22 2013

Keywords

Comments

Repeated terms of A016825 are in the positions 1,2,3,6,5,10,... (A043547).
From Wolfdieter Lang, Dec 04 2013: (Start)
This sequence a(n), n>=1, appears in the formula 2*sin(2*Pi/n) = R(p(n), x) modulo C(a(n), x), with x = rho(a(n)) = 2*cos(Pi/a(n)), the R-polynomials given in A127672 and the minimal C-polynomials of rho given in A187360. This follows from the identity 2*sin(2*Pi/n) = 2*cos(Pi*p(n)/a(n)) with gcd(p(n), a(n)) = 1. For p(n) see a comment on A106609,
Because R is an integer polynomial it shows that 2*sin(2*Pi/n) is an integer in the algebraic number field Q(rho(a(n))) of degree delta(a(n)) (the degree of C(a(n), x)), with delta(k) = A055034(k). This degree is given in A093819. For the coefficients of 2*sin(2*Pi/n) in the power basis of Q(rho(a(n))) see A231189 . (End)

Examples

			For the first formula: a(0)=-1+1=0, a(1)=-3+5=2, a(2)=-1+3=2, a(3)=-1+7=6, a(4)=0+1=1.
		

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_] := Sqrt[Denominator[1/4 - 4/n^2]]; Table[a[n], {n, 0, 58}] (* Jean-François Alcover, May 30 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,2,2,6,1,10,6,14,4,18,10,22,3,26,14,30},60] (* Harvey P. Dale, Nov 21 2019 *)

Formula

a(n) = A106609(n-4) + A106609(n+4) with A106609(-4)=-1, A106609(-3)=-3, A106609(-2)=-1, A106609(-1)=-1.
a(n) = 2*a(n-8) -a(n-16).
a(2n+1) = A016825(n), a(2n) = A145979(n-2) for n>1, a(0)=0, a(2)=2.
a(4n) = A022998(n).
a(4n+1) = A017089(n).
a(4n+2) = A016825(n).
a(4n+3) = A017137(n).
G.f.: x*(2 +2*x +6*x^2 +x^3 +10*x^4 +6*x^5 +14*x^6 +4*x^7 +14*x^8 +6*x^9 +10*x^10 +x^11 +6*x^12 +2*x^13 +2*x^14)/((1-x)^2*(1+x)^2*(1+x^2)^2*(1+x^4)^2). [Bruno Berselli, May 23 2013]
From Wolfdieter Lang, Dec 04 2013: (Start)
a(n) = 2*n if n is odd; if n is even then a(n) is n if n/2 == 1, 3, 5, 7 (mod 8), it is n/2 if n/2 == 0, 4 (mod 8) and it is n/4 if n/2 == 2, 6 (mod 8). This leads to the given G.f..
With c(n) = A178182(n), n>=1, a(n) = c(n)/2 if c(n) is even and c(n) if c(n) is odd. This leads to the preceding formula. (End)

Extensions

Edited by Bruno Berselli, May 24 2013

A232625 Denominators of abs(n-8)/(2*n), n >= 1.

Original entry on oeis.org

2, 2, 6, 2, 10, 6, 14, 1, 18, 10, 22, 6, 26, 14, 30, 4, 34, 18, 38, 10, 42, 22, 46, 3, 50, 26, 54, 14, 58, 30, 62, 8, 66, 34, 70, 18, 74, 38, 78, 5, 82, 42, 86, 22, 90, 46, 94, 12, 98, 50, 102, 26, 106, 54, 110, 7, 114, 58, 118, 30, 122, 62, 126, 16, 130, 66
Offset: 1

Views

Author

Wolfdieter Lang, Dec 12 2013

Keywords

Comments

The numerators are given in A231190. See the comments there on 2*sin(Pi*4/n).
2*sin(Pi*4/n) = R(b(n), x) (mod C(b(n), x)), with x = 2*cos(Pi/a(n)) =: rho(a(n)). The integer Chebyshev R and C polynomials are found in A127672 and A187360, respectively. b(n) = A231190(n).
delta(a(n)) = deg(2,n), with delta(k) = A055034(k), is the degree of the algebraic number 2*sin(Pi*4/n) given in A232626.

Crossrefs

Cf. A127672 (R), A187360 (C), A231190 (b), A055034 (delta), A232626 (degree k=2), A106609 (k=1, p), A225975 (k=1, q), A093819 (degree k=1).

Programs

  • Mathematica
    a[n_] := Denominator[(n-8)/(2*n)]; Array[a, 100] (* Amiram Eldar, Nov 09 2024 *)
  • PARI
    a(n) = denominator((n-8)/(2*n)); \\ Amiram Eldar, Nov 09 2024

Formula

a(n) = denominator(abs(n-8)/(2*n)), n >= 1.
a(n) = 2*n/gcd(n-8, 16).
a(n) = 2*n if n is odd; if n is even then a(n) = n if n/2 == 1, 3, 5, 7 (mod 8), a(n) = n/2 if n/2 == 2, 6 (mod 8), a(n) == n/4 if n/2 == 0 (mod 8) and a(n) = n/8 if n == 4 (mod 8).
O.g.f.: x*(2*(1+x^30) + 2*x*(1+x^28) + 6*x^2*(1+x^26) + 2*x^3*(1+x^24) + 10*x^4*(1+x^22) + 6*x^5*(1+x^20) + 14*x^6*(1+x^18) + x^7*(1+x^16) + 18*x^8*(1+x^14) + 10*x^9*(1+x^12) + 22*x^10*(1+x^10) + 6*x^11*(1+x^8) + 26*x^12*(1+x^6) + 14*x^13*(1+x^4) + 30*x^14*(1+x^2) + 4*x^15)/(1-x^16)^2.
Sum_{k=1..n} a(k) ~ (171/256) * n^2. - Amiram Eldar, Nov 09 2024

A234044 Period 7: repeat [2, -2, 1, 0, 0, 1, -2].

Original entry on oeis.org

2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2, 1, 0, 0, 1, -2, 2, -2
Offset: 0

Views

Author

Wolfdieter Lang, Feb 27 2014

Keywords

Comments

This is a member of the six sequences which appear for the instance N=7 of the general formula 2*exp(2*Pi*n*I/N) = R(n, x^2-2) + x*S(n-1, x^2-2)*s(N)*I, for n >= 0, with I = sqrt(-1), s(N) = sqrt(2-x)*sqrt(2+x), x = rho(N) := 2*cos(Pi/N) and R and S are the monic Chebyshev polynomials whose coefficient tables are given in A127672 and A049310. If powers x^k with k >= delta(N) = A055034(N) enter in R or x*S then C(N, x), the minimal polynomial of x = rho(N) (see A187360) is used for a reduction. If delta(N) = 2 it may happen that sqrt(2+x) or sqrt(2-x) is an integer in the number field Q(rho(N)). See the N=5 case comment on A164116.
For N=7 with delta(7) = 3, and C(7, x) = x^3 - x^2 - 2*x + 1 the final result becomes 2*exp(2*Pi*n*I/7) = (a(n) + b(n)*x + c(n)*x^2) + (A(n) + B(n)*x + C(n)*x^2)*s(7)*I, with x = rho(7) = 2*cos(Pi/7), a(n) the present sequence, b(n) = A234045(n), c(n) = A234046(n), A(n) = A238468(n), B(n) = A238469(n) and C(n) = A238470(n). The a, b, c and A, B, C brackets are integers in Q(rho(7)).

Examples

			n = 4: 2*exp(8*Pi*I/7) = (2-16*x^2+20*x^4-8*x^6+x^8) + (4*x+10*x^3-6*x^5+x^7)*s(7)*I, reduced with C(7, x) = x^3 - x^2 - 2*x + 1 = 0 this becomes = (-x) + (-1)*s(7)*I with x= 2*cos(Pi/7) and s(7) = 2*sin(Pi/7).The power basis coefficients are thus (a(4), b(4), c(4)) = (0, -1, 0) and (A(4), B(4), C(4)) = (-1, 0, 0).
		

Crossrefs

Cf. A234045, A234046, A238468, A238469, A238470, A099837 (N=3), A056594 (N=4), A164116 (N=5), A057079 (N=6).

Programs

Formula

G.f.: (2 - 2*x + x^2 + x^5 - 2*x^6)/(1 - x^7).
a(n+7) = a(n) for n>=0, with a(0) = -a(1) = -a(6) = 2, a(3) = a(4) =0 and a(2) = a(5) = 1.
From Wesley Ivan Hurt, Jul 16 2016: (Start)
a(n) + a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) = 0 for n>5.
a(n) = (1/7) * Sum_{k=1..6} 2*cos((2k)*n*Pi/7) - 2*cos((2k)*(1+n)*Pi/7) + cos((2k)*(2+n)*Pi/7) + cos((2k)*(5+n)*Pi/7) - 2*cos((2k)*(6+n)*Pi/7).
a(n) = 2 + 4*floor(n/7) - 3*floor((1+n)/7) + floor((2+n)/7) - floor((4+n)/7) + 3*floor((5+n)/7) - 4*floor((6+n)/7). (End)

A265185 Non-vanishing traces of the powers of the adjacency matrix for the simple Lie algebra B_4: 2 * ((2 + sqrt(2))^n + (2 - sqrt(2))^n).

Original entry on oeis.org

4, 8, 24, 80, 272, 928, 3168, 10816, 36928, 126080, 430464, 1469696, 5017856, 17132032, 58492416, 199705600, 681837568, 2327939072, 7948081152, 27136446464, 92649623552, 316325601280, 1080003158016, 3687361429504, 12589439401984, 42983034748928
Offset: 0

Views

Author

Tom Copeland, Dec 04 2015

Keywords

Comments

a(n) is the trace of the 2*n-th power of the adjacency matrix M for the simple Lie algebra B_4, given in the Damianou link. M = Matrix[row 1; row 2; row 3; row 4] = Matrix[0,1,0,0; 1,0,1,0; 0,1,0,2; 0,0,1,0]. Equivalently, the trace tr(M^(2*k)) is the sum of the 2*n-th powers of the eigenvalues of M. The eigenvalues are the zeros of the characteristic polynomial of M, which is det(x*I - M) = x^4 - 4*x^2 + 2 = A127672(4,x), and are (+-) sqrt(2 + sqrt(2)) and (+-) sqrt(2 - sqrt(2)), or the four unique values generated by 2*cos((2*n+1)*Pi/8). Compare with A025192 for B_3. The odd power traces vanish.
-log(1 - 4*x^2 + 2*x^4) = 8*x^2/2 + 24*x^4/4 + 80*x^6/6 + ... = Sum_{n>0} tr(M^k) x^k / k = Sum_{n>0} a(n) x^(2k) / 2k gives an aerated version of the sequence a(n), excluding a(0), and exp(-log(1 - 4*x + 2*x^2)) = 1 / (1 - 4*x + 2*x^2) is the e.g.f. for A007070.
As in A025192, the cycle index partition polynomials P_k(x[1],...,x[k]) of A036039 evaluated with the negated power sums, the aerated a(n), are P_2(0,-a(1)) = P_2(0,-8) = -8, P_4(0,-a(1),0,-a(2)) = P_4(0,-8,0,-24) = 48, and all other P_k(0,-a(1),0,-a(2),0,...) = 0 since 1 - 4*x^2 + 2*x^4 = 1 - 8*x^2/2! + 48*x^4/4! = det(I - x M) = exp(-Sum_{k>0} tr(M^k) x^k / k) = exp[P.(-tr(M),-tr(M^2),...)x] = exp[P.(0,-a(1),0,-a(2),...)x].
Because of the inverse relation between the Faber polynomials F_n(b1,b2,...,bn) of A263916 and the cycle index polynomials, F_n(0,-4,0,2,0,0,0,...) = tr(M^n) gives aerated a(n), excluding a(0). E.g., F_2(0,-4) = -2 * -4 = 8, F_4(0,-4,0,2) = -4 * 2 + 2 * (-4)^2 = 24, and F_6(0,-4,0,2,0,0) = -2*(-4)^3 + 6*(-4)*2 = 80.

Crossrefs

Programs

  • Magma
    [Floor(2 * ((2 + Sqrt(2))^n + (2 - Sqrt(2))^n)): n in [0..30]]; // Vincenzo Librandi, Dec 06 2015
    
  • Mathematica
    4 LinearRecurrence[{4, -2}, {1, 2}, 30] (* Vincenzo Librandi, Dec 06 2015 and slightly modified by Robert G. Wilson v, Feb 13 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-8*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Feb 12 2018

Formula

a(n) = 2 * ((2 + sqrt(2))^n + (2 - sqrt(2))^n) = Sum_{k=0..3} 2^(2n) (cos((2k+1)*Pi/8))^(2n) = 2*2^(2n) (cos(Pi/8)^(2n) + cos(3*Pi/8)^(2n)) = 2 Sum_{k=0..1} (exp(i(2k+1)*Pi/8) + exp(-i*(2k+1)*Pi/8))^(2n).
E.g.f.: 2 * e^(2*x) * (e^(sqrt(2)*x) + e^(-sqrt(2)*x)) = 4*e^(2*x)*cosh(sqrt(2)*x) = 2*(exp(4*x*cos(Pi/8)^2) + exp(4*x cos(3*Pi/8)^2) ).
a(n) = 4*A006012(n) = 8*A007052(n-1) = 2*A056236(n).
G.f.: (4-8*x)/(1-4*x+2*x^2). - Robert Israel, Dec 07 2015
Note the preceding o.g.f. is four times that of A006012 and the denominator is y^4 * A127672(4,1/y) with y = sqrt(x). Compare this with those of A025192 and A189315. - Tom Copeland, Dec 08 2015

Extensions

More terms from Vincenzo Librandi, Dec 06 2015

A108045 Triangle read by rows: lower triangular matrix obtained by inverting the lower triangular matrix in A108044.

Original entry on oeis.org

1, 0, 1, -2, 0, 1, 0, -3, 0, 1, 2, 0, -4, 0, 1, 0, 5, 0, -5, 0, 1, -2, 0, 9, 0, -6, 0, 1, 0, -7, 0, 14, 0, -7, 0, 1, 2, 0, -16, 0, 20, 0, -8, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, -2, 0, 25, 0, -50, 0, 35, 0, -10, 0, 1, 0, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, 2, 0, -36, 0, 105, 0, -112, 0, 54, 0, -12, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2005

Keywords

Comments

Signed version of A114525. - Eric W. Weisstein, Apr 07 2017
For n >= 3, also the coefficients of the matching polynomial for the n-cycle graph C_n. - Eric W. Weisstein, Apr 07 2017
This triangle describes the Chebyshev transform of A100047 and following. Chebyshev transform of sequence b is c(n) = Sum_{k=1..n} a(n,k)*b(k). - Christian G. Bower, Jun 12 2005

Examples

			Triangle begins:
   1;
   0,  1;
  -2,  0,  1;
   0, -3,  0,  1;
   2,  0, -4,  0,  1;
		

Crossrefs

Cf. A114525 (unsigned version).
Cf. A127672.

Programs

  • Maple
    f:=(1-x^2)/(1+x^2): g:=x/(1+x^2): G:=simplify(f/(1-t*g)): Gser:=simplify(series(G,x=0,14)): P[0]:=1: for n from 1 to 12 do P[n]:=coeff(Gser,x^n) od: for n from 0 to 12 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form # Emeric Deutsch, Jun 06 2005
  • Mathematica
    a[n_, k_] := SeriesCoefficient[(1-x^2)/(1+x^2-t*x), {x, 0, n}, {t, 0, k}]; a[0, 0] = 1; Table[a[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2014, after Emeric Deutsch *)
    Flatten[{{1}, CoefficientList[Table[I^n LucasL[n, -I x], {n, 10}], x]}] (* Eric W. Weisstein, Apr 07 2017 *)
    Flatten[{{1}, CoefficientList[LinearRecurrence[{x, -1}, {x, -2 + x^2}, 10], x]}] (* Eric W. Weisstein, Apr 07 2017 *)

Formula

Riordan array ( (1-x^2)/(1+x^2), x/(1+x^2)).
G.f.: (1-x^2)/(1+x^2-tx). - Emeric Deutsch, Jun 06 2005
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x^2) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = ( 1 + sqrt(1 - 4*x^2) )/2.
In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)

Extensions

More terms from Emeric Deutsch and Christian G. Bower, Jun 06 2005

A128494 Coefficient table for sums of Chebyshev's S-Polynomials.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 1, -1, -2, 1, 1, 1, 2, -2, -3, 1, 1, 0, 2, 4, -3, -4, 1, 1, 0, -2, 4, 7, -4, -5, 1, 1, 1, -2, -6, 7, 11, -5, -6, 1, 1, 1, 3, -6, -13, 11, 16, -6, -7, 1, 1, 0, 3, 9, -13, -24, 16, 22, -7, -8, 1, 1, 0, -3, 9, 22, -24, -40, 22, 29, -8, -9, 1, 1, 1, -3, -12, 22, 46, -40, -62, 29, 37, -9, -10, 1, 1, 1, 4, -12
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2007

Keywords

Comments

See A049310 for the coefficient table of Chebyshev's S(n,x)=U(n,x/2) polynomials.
This is a 'repetition triangle' based on a signed version of triangle A059260: a(2*p,2*k) = a(2*p+1,2*k) = A059260(p+k,2*k)*(-1)^(p+k) and a(2*p+1,2*k+1) = a(2*p+2,2*k+1) = A059260(p+k+1,2*k+1)*(-1)^(p+k), k >= 0.

Examples

			The triangle a(n,m) begins:
  n\m  0   1   2   3   4   5   6   7   8   9  10
   0:  1
   1:  1   1
   2:  0   1   1
   3:  0  -1   1   1
   4:  1  -1  -2   1   1
   5:  1   2  -2  -3   1   1
   6:  0   2   4  -3  -4   1   1
   7:  0  -2   4   7  -4  -5   1   1
   8:  1  -2  -6   7  11  -5  -6   1   1
   9:  1   3  -6 -13  11  16  -6  -7   1   1
  10:  0   3   9 -13 -24  16  22  -7  -8   1   1
... reformatted by _Wolfdieter Lang_, Oct 16 2012
Row polynomial S(1;4,x) = 1 - x - 2*x^2 + x^3 + x^4 = Sum_{k=0..4} S(k,x).
S(4,y)*S(5,y)/y = 3 - 13*y^2 + 16*y^4 - 7*y^6 + y^8, with y=sqrt(2+x) this becomes S(1;4,x).
From _Wolfdieter Lang_, Oct 16 2012: (Start)
S(1;4,x) = (1 - (S(5,x) - S(4,x)))/(2-x) = (1-x)*(2-x)*(1+x)*(1-x-x^2)/(2-x) = (1-x)*(1+x)*(1-x-x^2).
S(5,x) - S(4,x) = R(11,sqrt(2+x))/sqrt(2+x) = -1 + 3*x + 3*x^2 - 4*x^3 - x^4 + x^5. (End)
		

Crossrefs

Row sums (signed): A021823(n+2). Row sums (unsigned): A070550(n).
Cf. A128495 for S(2; n, x) coefficient table.
The column sequences (unsigned) are, for m=0..4: A021923, A002265, A008642, A128498, A128499.
For m >= 1 the column sequences (without leading zeros) are of the form a(m, 2*k) = a(m, 2*k+1) = ((-1)^k)*b(m, k) with the sequences b(m, k), given for m=1..11 by A008619, A002620, A002623, A001752, A001753, A001769, A001779, A001780, A001781, A001786, A001808.

Formula

S(1;n,x) = Sum_{k=0..n} S(k,x) = Sum_{m=0..n} a(n,m)*x^m, n >= 0.
a(n,m) = [x^m](S(n,y)*S(n+1,y)/y) with y:=sqrt(2+x).
G.f. for column m: (x^m)/((1-x)*(1+x^2)^(m+1)), which shows that this is a lower diagonal matrix of the Riordan type, named (1/((1+x^2)*(1-x)), x/(1+x^2)).
From Wolfdieter Lang, Oct 16 2012: (Start)
a(n,m) = [x^m](1- (S(n+1,x) - S(n,x)))/(2-x). From the Binet - de Moivre formula for S and use of the geometric sum.
a(n,m) = [x^m](1- R(2*n+3,sqrt(2+x))/sqrt(2+x))/(2-x) with the monic integer T-polynomials R with coefficient triangle given in A127672. From the odd part of the bisection of the T-polynomials. (End)

A228783 Table of coefficients of the algebraic number s(2*l) = 2*sin(Pi/2*l) as a polynomial in powers of rho(2*l) = 2*cos(Pi/(2*l)) if l is even and of rho(l) = 2*cos(Pi/l) if l is odd (reduced version).

Original entry on oeis.org

2, 0, 1, 1, 0, -3, 0, 1, -1, 1, 0, 4, 0, -1, -1, -1, 1, 0, -7, 0, 14, 0, -7, 0, 1, 2, 1, -1, 0, 8, 0, -18, 0, 8, 0, -1, 1, 2, -3, -1, 1, 0, -8, 0, 6, 0, -1, 0, 0, -1, 3, 3, -4, -1, 1, 0, 12, 0, -67, 0, 96, 0, -52, 0, 12, 0, -1, -2, 3, 1, -1, 0, -15, 0, 140, 0, -378, 0, 450, 0, -275, 0, 90, 0, -15, 0, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 06 2013

Keywords

Comments

In the regular (2*l)-gon inscribed in a circle of radius R the length ratio side/R is s(2*l) = 2*sin(Pi/(2*l)). This can be written as a polynomial in the length ratio (smallest diagonal)/side given by rho(2*l) = 2*cos(Pi/(2*l)). (For the 2-gon there is no such diagonal and rho(2) = 0). This leads, in a first step, to the triangle A127672 (see the Oct 05 2013 comment there referring also to the bisections signed A111125 and A127677). Because the minimal polynomial of the algebraic number rho(2*l) of degree delta(2*l) = A055034(2*l), called C(2*l,x) (with coefficients given in A187360) one can eliminate all powers rho(2*l)^k with k >= delta(2*l) by using C(2*l,rho(2*l)) = 0. Furthermore, because for odd l only even powers of rho(2*l) appear, but rho(2*l)^2 = 2 + rho(l), one will obtain a reduced table for s(2*l) with powers rho(2*l)^(2*k+1), k= 0, ..., (delta(2*l)-2)/2 if l is even, and with powers rho(l)^m, m=0, ... , delta(l)-1 if l is odd.
This leads to a reduction of the triangle A127672, when applied for the s(2*l) computation, giving the present table with row length delta(4*L) = A055034(4*L) = phi(8*L)/2 if l =2*L, if L >= 1, and phi(2*L+1)/2 = A055035(4*L+2), if l = 2*L + 1, L >= 1, where phi(n) = A000010(n) (Euler totient).
This table gives the coefficients of s(2*l) in the power basis of the algebraic number field Q(rho(2*l)) of degree delta(2*l) = A055034(2*l) if l is even, and in Q(rho(l)) of degree delta(2*l)/2 if l is odd. s(2) and s(6) are rational integers of degree 1.
Thanks go to Seppo Mustonen whose question about the square of the sum of all length in a regular n-gon, led me to this computation.
If l = 2*L+1, L >= 0, that is n == 2 (mod 4), one can obtain s(2*l) more directly in powers of rho(l) by s(2*l) = R(l-1, rho(l)) (mod C(l,rho(l))), with the monic (except for l=1) Chebyshev T-polynomials, called R, in A127672, and the C polynomials from A187360. - Wolfdieter Lang, Oct 10 2013

Examples

			The table a(l,m), with n = 2*l, begins:
n,  l \m  0   1   2    3   4   5   6    7   8   9  10  11 ...
2   1:    2
4   2:    0   1
6   3:    1
8   4:    0  -3   0    1
10  5:   -1   1
12  6:    0   4   0   -1
14  7:   -1  -1   1
16  8:    0  -7   0   14   0  -7   0    1
18  9:    2   1  -1
20 10:    0   8   0  -18   0   8   0   -1
22 11:    1   2  -3   -1   1
24 12:    0  -8   0    6   0  -1   0    0
26 13:   -1   3   3   -4  -1   1
28 14:    0  12   0  -67   0  96   0  -52  0  12  0  -1
30 15:   -2   3   1   -1
...
n = 8, l = 4:  s(8)  = -3*rho(8) + rho(8)^3 = -3*sqrt(2 + sqrt(2)) + (sqrt(2 + sqrt(2)))^3 = (sqrt(2) - 1)*sqrt(2 + sqrt(2)).
n = 10, l = 5:  s(10) =  -1 + rho(5), where rho(5) = tau = (1 + sqrt(5))/2, the golden section.
		

Crossrefs

Cf. A127672, A111125, A127677, A055034, A187360, A228785 (odd n case), A228786 (minimal polynomials).

Formula

a(2*L,m) = [x^m](s(4*L,x)(mod C(4*L,x))), with s(4*L,x) = sum((-1)^(L-1-s)*A111125(L-1,s)*x^(2*s+1),s=0..L-1), L >= 1, m =0, ..., delta(4*L)-1, and
a(2*L+1,m) = [x^m](s(4*L+2,x)(mod C(2*L+1,x))), with s(4*L+2,x) = sum(A127677(L,s)*(2+x)^(L-s)),s=0..L) (with s(2,x) = 2 for L = 0), L >= 0, m = 0, ..., delta(4*L+2)/2, with delta(n) = A055034(2*l).

A244422 Quasi-Riordan triangle ((2-z)/(1-z), -z^2/(1-z)). Row reversed monic Chebyshev T-polynomials without vanishing columns.

Original entry on oeis.org

2, 1, 0, 1, -2, 0, 1, -3, 0, 0, 1, -4, 2, 0, 0, 1, -5, 5, 0, 0, 0, 1, -6, 9, -2, 0, 0, 0, 1, -7, 14, -7, 0, 0, 0, 0, 1, -8, 20, -16, 2, 0, 0, 0, 0, 1, -9, 27, -30, 9, 0, 0, 0, 0, 0, 1, -10, 35, -50, 25, -2, 0, 0, 0, 0, 0, 1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0, 0, 1, -12, 54, -112, 105, -36, 2, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Wolfdieter Lang, Aug 08 2014

Keywords

Comments

This is a signed version of the triangle A061896.
The coefficient table for the monic Chebyshev polynomials of the first kind R(n, x) = 2*T(n, x/2) is given in A127672. For the T-polynomials see A053120. The present table is obtained from the row reversed coefficient table A127672 by deleting all odd numbered columns which have only zeros, and appending in the rows numbered n >= 1 zeros in order to obtain a triangle. This becomes the quasi-Riordan triangle T = ((2-z)/(1-z), -z^2/(1-z)). This means that the o.g.f. of the row polynomials Rrev(n, x) := sqrt(x)^n*R(n, 1/sqrt(x)) = Sum_{k=0..n} T(n, k)*x^k have o.g.f. (2-z)/(1 - z + x*z^2) like for ordinary Riordan triangles. However this is not a Riordan triangle (or lower triangular infinite dimensional matrix) in the usual sense because it is not invertible. Therefore, this lower triangular matrix is not a member of the Riordan group.
The row sums give repeat(2,1,-1,-2,-1) which is A057079(n+1), n >= 0. The alternating row sums give the Lucas numbers A000032.

Examples

			The triangle T(n,k) begins:
  n\k  0   1   2     3    4     5  6   7  8  9 10 11
  0:   2
  1:   1   0
  2:   1  -2   0
  3:   1  -3   0     0
  4:   1  -4   2     0    0
  5:   1  -5   5     0    0     0
  6:   1  -6   9    -2    0     0  0
  7:   1  -7  14    -7    0     0  0   0
  8:   1  -8  20   -16    2     0  0   0  0
  9:   1  -9  27   -30    9     0  0   0  0  0
  10:  1 -10  35   -50   25    -2  0   0  0  0  0
  11:  1 -11  44   -77   55   -11  0   0  0  0  0  0
  ...
Rrev(3, x) = 1 - 3*x = sqrt(x)^3*R(3,1/sqrt(x)) = sqrt(x)^3*(-3/sqrt(x) + 1/sqrt(x)^3 ) = -3*x + 1.
Rrev(4, x) = 1 - 4*x + 2*x^2 = sqrt(x)^4*(2 - 4/sqrt(x)^2 + 1/sqrt(x)^4) = 2*x^2 - 4*x + 1.
Recurrence: T(4,1) = T(3, 1) - T(2, 0) = -3 -1 = -4.
		

Crossrefs

Formula

T(n,k) = [x^k] Rrev(n, x), k=0, 1, ..., n, with the row polynomials Rrev(n, x) = sqrt(x)^n*R(n,1/sqrt(x)), with R(n, x) given in A127672 (monic Chebyshev polynomials of the first kind).
O.g.f. row polynomials Rrev(n,x) = Sum_{k=0..n} T(n,k)*x^k: (2-z)/(1 - z + x*z^2) (quasi-Riordan).
O.g.f. for column number k entries with leading zeros: ((2-x)/(1-x))*(-x^2/(1-x))^k, k > = 0. See A054977, -A000027, A000096, -A005581, A005582, -A005583, A005584.
Recurrence: T(n,k) = T(n-1, k) - T(n-2, k-1), n >= k >= 1, T(n,k) = 0 if n < k, T(0,0) = 2, T(n,0) = 1 if n>=1, (Compare with A061896).
For n >= 1 the entries without trailing zeros are given by T(n,k) = (-1)^k*(n/(n-k))*binomial(n-k,k) where k=0..floor(n/2).
Previous Showing 41-50 of 81 results. Next