cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A383513 Heinz numbers of non conjugate Wilf partitions.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246
Offset: 1

Views

Author

Gus Wiseman, May 13 2025

Keywords

Comments

First differs from A381433 in having 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   65: {3,6}
   66: {1,2,5}
   70: {1,3,4}
   72: {1,1,1,2,2}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A336866.
The conjugate version is A130092, complement A130091.
Including differences of 0 gives complement of A325367, counted by A325324.
The strict case is the complement of A325388, counted by A320348.
The complement is A383512, counted by A098859.
Also forbidding distinct multiplicities gives A383531, counted by A383530.
These are positions of non-strict rows in A383534, or nonsquarefree numbers in A383535.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A383507 counts partitions that are Wilf and conjugate Wilf, ranks A383532.
A383709 counts Wilf partitions with distinct augmented differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]

A351592 Number of Look-and-Say partitions (A239455) of n without distinct multiplicities, i.e., those that are not Wilf partitions (A098859).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 5, 2, 8, 9, 8, 6, 21, 14, 20, 26, 31, 24, 53, 35, 60, 68, 78, 76, 140, 115, 163, 183, 232, 218, 343, 301, 433, 432, 565, 542, 774, 728, 958, 977, 1251, 1220, 1612, 1561, 2053, 2090, 2618, 2609, 3326, 3378
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

A partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are distinct, so y is counted under A239455(9).
A partition is Wilf iff it has distinct multiplicities of parts. For example, (2,2,2,1,1,1) has multiplicities (3,3), so is not counted under A098859(9).
The Heinz numbers of these partitions are given by A351294 \ A130091.
Is a(17) = 0 the last zero of the sequence?

Examples

			The a(9) = 1 through a(18) = 5 partitions are (empty columns not shown):
  n=9:      n=12:       n=15:         n=16:       n=18:
  --------------------------------------------------------------
  (222111)  (333111)    (333222)      (33331111)  (444222)
            (22221111)  (444111)                  (555111)
                        (2222211111)              (3322221111)
                                                  (32222211111)
                                                  (222222111111)
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Look-and-Say partitions are counted by A239455, ranked by A351294.
Non-Wilf partitions are counted by A336866, ranked by A130092.
Non-Look-and-Say partitions are counted by A351293, ranked by A351295.
A000569 = number of graphical partitions, complement A339617.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A225485/A325280 = frequency depth, ranked by A182850/A323014.
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths
A351013 = compositions with all distinct runs.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&Select[Permutations[#], UnsameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A239455(n) - A098859(n). Here we assume A239455(0) = 1.

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A212168 Numbers n such that the maximal exponent in its prime factorization is less than the number of positive exponents (A051903(n) < A001221(n)).

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142, 143
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

A225230(a(n)) > 1; A050326(a(n)) > 1. - Reinhard Zumkeller, May 03 2013
Subsequence of A130092. - Ivan N. Ianakiev, Sep 17 2019

Examples

			10 = 2^1*5^1 has 2 distinct prime factors, hence 2 positive exponents in its prime factorization (although the 1s are often left implicit). 2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 belongs to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212165. See also A212164, A212166-A212167.
Subsequence of A188654.

Programs

  • Haskell
    import Data.List (findIndices)
    a212168 n = a212168_list !! (n-1)
    a212168_list = map (+ 1) $ findIndices (> 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] < Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
    Select[Range[200],Max[FactorInteger[#][[All,2]]]Harvey P. Dale, Nov 21 2018 *)
  • PARI
    is(n,f=factor(n))=my(e=f[,2]); #e && vecmax(e)<#e \\ Charles R Greathouse IV, Jan 09 2022

A383506 Number of non Wilf section-sum partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 3, 4, 4, 7, 9, 12, 18, 25, 32, 42, 55, 64, 87, 101, 128, 147, 192, 218, 273, 314, 394, 450, 552, 631, 772, 886, 1066, 1221, 1458, 1677, 1980, 2269, 2672, 3029
Offset: 0

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different, ranked by A130091.
An integer partition is section-sum iff it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The a(4) = 1 through a(12) = 12 partitions (A=10, B=11):
  (31)  (32)  (51)  (43)  (53)    (54)  (64)    (65)    (75)
        (41)        (52)  (62)    (63)  (73)    (74)    (84)
                    (61)  (71)    (72)  (82)    (83)    (93)
                          (3311)  (81)  (91)    (92)    (A2)
                                        (631)   (A1)    (B1)
                                        (3322)  (632)   (732)
                                        (4411)  (641)   (831)
                                                (731)   (5511)
                                                (6311)  (6411)
                                                        (7311)
                                                        (63111)
                                                        (333111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
For Look-and-Say instead of section-sum we have A351592 (A384006).
The Look-and-Say case is A383511 (A383518).
These partitions are ranked by (A383514).
For Wilf instead of non Wilf we have A383519 (A383520).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).

Programs

  • Mathematica
    disjointDiffs[y_]:=Select[Tuples[IntegerPartitions /@ Differences[Prepend[Sort[y],0]]], UnsameQ@@Join@@#&];
    Table[Length[Select[IntegerPartitions[n], disjointDiffs[#]!={} && !UnsameQ@@Length/@Split[#]&]],{n,0,15}]

A383709 Number of integer partitions of n with distinct multiplicities (Wilf) and distinct 0-appended differences.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 4, 4, 4, 5, 6, 5, 7, 8, 6, 8, 9, 9, 10, 9, 10, 12, 12, 11, 12, 14, 13, 14, 15, 14, 16, 16, 16, 18, 17, 17, 19, 20, 19, 19, 21, 21, 22, 22, 21, 24, 24, 23, 25, 25, 25, 26, 27, 27, 27, 28, 28, 30, 30, 28, 31, 32, 31, 32, 32, 33, 34, 34, 34
Offset: 0

Views

Author

Gus Wiseman, May 15 2025

Keywords

Comments

Integer partitions with distinct multiplicities are called Wilf partitions.

Examples

			The a(1) = 1 through a(8) = 4 partitions:
  (1)  (2)    (3)  (4)    (5)      (6)      (7)      (8)
       (1,1)       (2,2)  (3,1,1)  (3,3)    (3,2,2)  (4,4)
                                   (4,1,1)  (3,3,1)  (3,3,2)
                                            (5,1,1)  (6,1,1)
		

Crossrefs

For just distinct multiplicities we have A098859, ranks A130091, conjugate A383512.
For just distinct 0-appended differences we have A325324, ranks A325367.
For positive differences we have A383507, ranks A383532.
These partitions are ranked by A383712.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A239455 counts Look-and-Say partitions, complement A351293.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A383530 counts partitions that are not Wilf or conjugate-Wilf, ranks A383531.
A383534 gives 0-prepended differences by rank, see A325351.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#]&&UnsameQ@@Differences[Append[#,0]]&]],{n,0,30}]

Formula

Ranked by A130091 /\ A325367

A383530 Number of non Wilf and non conjugate Wilf integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 2, 5, 12, 14, 19, 35, 38, 55, 83, 107, 137, 209, 252, 359, 462, 612, 757, 1032, 1266, 1649, 2050, 2617, 3210, 4111, 4980, 6262, 7659, 9479, 11484, 14224, 17132, 20962, 25259, 30693, 36744, 44517, 53043, 63850, 75955, 90943, 107721, 128485
Offset: 0

Views

Author

Gus Wiseman, May 14 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The a(0) = 0 through a(9) = 12 partitions:
  .  .  .  (21)  .  .  (42)    (421)   (431)    (63)
                       (321)   (3211)  (521)    (432)
                       (2211)          (3221)   (531)
                                       (4211)   (621)
                                       (32111)  (3321)
                                                (4221)
                                                (4311)
                                                (5211)
                                                (32211)
                                                (42111)
                                                (222111)
                                                (321111)
		

Crossrefs

Negating both sides gives A383507, ranks A383532.
These partitions are ranked by A383531.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A239455 counts Look-and-Say partitions, complement A351293.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A381431 is the section-sum transform, union A381432, complement A381433.
A383534 gives 0-prepended differences by rank, see A325351.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&!UnsameQ@@Length/@Split[conj[#]]&]], {n,0,30}]

Formula

These partitions have Heinz numbers A130092 /\ A383513.

A383531 Heinz numbers of integer partitions that do not have distinct multiplicities (Wilf) or distinct nonzero 0-appended differences (conjugate Wilf).

Original entry on oeis.org

6, 21, 30, 36, 42, 60, 65, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 132, 133, 138, 140, 150, 154, 156, 165, 168, 174, 180, 186, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258, 264, 270, 273, 276, 280, 282, 286, 294, 300, 306, 308
Offset: 1

Views

Author

Gus Wiseman, May 15 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   21: {2,4}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   60: {1,1,2,3}
   65: {3,6}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
		

Crossrefs

These partitions are counted by A383530.
Negating both sides gives A383532, counted by A383507.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A122111 represents conjugation in terms of Heinz numbers.
A325324 counts integer partitions with distinct 0-appended differences, ranks A325367.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],!UnsameQ@@Length/@Split[prix[#]] && !UnsameQ@@Length/@Split[conj[prix[#]]]&]

Formula

Equals A130092 /\ A383513.

A384006 Heinz numbers of Look-and-Say partitions without distinct multiplicities (non Wilf).

Original entry on oeis.org

216, 1000, 1296, 2744, 3375, 7776, 9261, 10000, 10648, 17576, 32400, 35937, 38416, 38880, 39304, 42875, 46656, 50625, 54000, 54432, 54872, 59319, 63504, 81000, 85536, 90000, 97336, 100000
Offset: 1

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different, ranked by A130091, complement A130092.
An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.

Examples

			The terms together with their prime indices begin:
     216: {1,1,1,2,2,2}
    1000: {1,1,1,3,3,3}
    1296: {1,1,1,1,2,2,2,2}
    2744: {1,1,1,4,4,4}
    3375: {2,2,2,3,3,3}
    7776: {1,1,1,1,1,2,2,2,2,2}
    9261: {2,2,2,4,4,4}
   10000: {1,1,1,1,3,3,3,3}
   10648: {1,1,1,5,5,5}
   17576: {1,1,1,6,6,6}
   32400: {1,1,1,1,2,2,2,2,3,3}
   35937: {2,2,2,5,5,5}
   38416: {1,1,1,1,4,4,4,4}
   38880: {1,1,1,1,1,2,2,2,2,2,3}
   39304: {1,1,1,7,7,7}
   42875: {3,3,3,4,4,4}
   46656: {1,1,1,1,1,1,2,2,2,2,2,2}
   50625: {2,2,2,2,3,3,3,3}
   54000: {1,1,1,1,2,2,2,3,3,3}
   54432: {1,1,1,1,1,2,2,2,2,2,4}
   54872: {1,1,1,8,8,8}
   59319: {2,2,2,6,6,6}
   63504: {1,1,1,1,2,2,2,2,4,4}
   81000: {1,1,1,2,2,2,2,3,3,3}
   85536: {1,1,1,1,1,2,2,2,2,2,5}
   90000: {1,1,1,1,2,2,3,3,3,3}
   97336: {1,1,1,9,9,9}
  100000: {1,1,1,1,1,3,3,3,3,3}
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are counted by A351592.
For section-sum instead of Look-and-Say we have (A383514), counted by A383506.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],disjointFamilies[prix[#]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&]

A383089 Numbers whose prime indices have more than one permutation with all equal run-lengths.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2025

Keywords

Comments

First differs from A362606 (complement A359178 with 1) in having 180 and lacking 240.
First differs from A130092 (complement A130091) in having 360 and lacking 240.
First differs from A351295 (complement A351294) in having 216 and lacking 240.
Includes all squarefree numbers A005117 except the primes A000040.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 36 are {1,1,2,2}, and we have 4 permutations each having all equal run-lengths: (1,1,2,2), (1,2,1,2), (2,2,1,1), (2,1,2,1), so 36 is in the sequence.
The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   30: {1,2,3}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   42: {1,2,4}
   46: {1,9}
   51: {2,7}
   55: {3,5}
   57: {2,8}
   58: {1,10}
   60: {1,1,2,3}
		

Crossrefs

Positions of terms > 1 in A382857 (distinct A382771), zeros A382879, ones A383112.
For run-sums instead of lengths we have A383015, counted by A383097.
Partitions of this type are counted by A383090.
The complement is A383091, counted by A383092, just zero A382915, just one A383094.
For distinct instead of equal run-sums we have A383113.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A047966 counts partitions with equal run-lengths, compositions A329738.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct run-lengths, ranks A130091.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Select[Range[100],Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]]>1&]

Formula

The complement is A383091 = A382879 \/ A383112, counted by A382915 + A383094.

A383509 Number of Look-and-Say partitions of n that are not section-sum partitions.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 3, 4, 4, 7, 9, 11, 18, 25, 30, 41, 55, 63, 87, 98, 125, 147, 192, 213, 271, 313, 389, 444, 551, 621, 767, 874, 1055, 1209, 1444, 1646, 1965, 2244, 2644, 2991
Offset: 0

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

A partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.
A partition is section-sum iff its conjugate is Look-and-Say, meaning it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The a(4) = 1 through a(11) = 9 partitions:
  211  221   21111  2221    422      22221     442        222221
       2111         22111   22211    222111    4222       322211
                    211111  221111   2211111   222211     332111
                            2111111  21111111  322111     422111
                                               2221111    2222111
                                               22111111   3221111
                                               211111111  22211111
                                                          221111111
                                                          2111111111
Conjugates of the a(4) = 1 through a(11) = 9 partitions:
  (3,1)  (3,2)  (5,1)  (4,3)  (5,3)      (5,4)  (6,4)      (6,5)
         (4,1)         (5,2)  (6,2)      (6,3)  (7,3)      (7,4)
                       (6,1)  (7,1)      (7,2)  (8,2)      (8,3)
                              (3,3,1,1)  (8,1)  (9,1)      (9,2)
                                                (6,3,1)    (10,1)
                                                (3,3,2,2)  (6,3,2)
                                                (4,4,1,1)  (6,4,1)
                                                           (7,3,1)
                                                           (6,3,1,1)
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are ranked by (A383516).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A351592 counts non Wilf Look-and-Say partitions (A384006).
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).
A383519 counts section-sum Wilf partitions (A383520).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions /@ Length/@Split[y]],UnsameQ@@Join@@#&];
    conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], disjointFamilies[#]!={}&&disjointFamilies[conj[#]]=={}&]], {n,0,30}]
Previous Showing 11-20 of 42 results. Next