cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A132951 Period 6: repeat [1, 3, 1, -1, -3, -1].

Original entry on oeis.org

1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1, 1, 3, 1, -1, -3, -1
Offset: 0

Views

Author

Paul Curtz, Nov 22 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 3*a(n-1)-a(n-3)+3*a(n-4).
O.g.f.: (1+3*x+x^2)/((x+1)*(x^2-x+1)) = -(1/3)/(x+1)+(1/3)*(4*x+4)/(x^2-x+1). - R. J. Mathar, Nov 28 2007
a(n) = -(1/3)*(-1)^n+(4/3)*cos(Pi*n/3)+(4*3^0.5/3)*sin(Pi*n/3). - Richard Choulet, Jan 02 2008
a(n) = a(n-6) = A131531(n+3)+A131531(n+1)+3*A131531(n+2). - R. J. Mathar, Apr 04 2008
a(n) = A109007(n+2) * A130151(n). - Wesley Ivan Hurt, Jun 22 2013

Extensions

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar.

A167617 G.f.: x^2*(3+3*x+x^2) / ( (2*x+1) * (1+x) * (1+x+x^2) * (x^2-x+1) ) .

Original entry on oeis.org

0, 0, 3, -6, 10, -21, 42, -84, 171, -342, 682, -1365, 2730, -5460, 10923, -21846, 43690, -87381, 174762, -349524, 699051, -1398102, 2796202, -5592405, 11184810, -22369620, 44739243, -89478486, 178956970, -357913941, 715827882, -1431655764, 2863311531
Offset: 0

Views

Author

Paul Curtz, Nov 07 2009

Keywords

Comments

The derived sequence a(n+1) + 2*a(n) reads 0,3,0,-2,-1,0 (and repeat with period 6).

Crossrefs

Cf. A167613.

Programs

  • Mathematica
    CoefficientList[Series[x^2(3+3x+x^2)/((2x+1)(1+x)(1+x+x^2)(x^2-x+1)), {x,0,40}],x] (* or *) LinearRecurrence[{-3,-3,-3,-3,-3,-2},{0,0,3,-6,10,-21},40] (* Harvey P. Dale, Sep 08 2011 *)

Formula

a(3*k+2) + a(3*k+3) + a(3*k+4) = (-1)^(k+1)*A024088(k+1).
a(n) = (-1)^n*A024495(n+1) + A131531(n+1).
a(n) = -3*a(n-1) -3*a(n-2) -3*a(n-3) -3*a(n-4) -3*a(n-5) -2*a(n-6).

Extensions

Edited and extended by R. J. Mathar, Nov 12 2009

A135450 a(n) = 3*a(n-1) + 4*a(n-2) - a(n-3) + 3*a(n-4) + 4*a(n-5).

Original entry on oeis.org

0, 0, 0, 1, 4, 16, 63, 252, 1008, 4033, 16132, 64528, 258111, 1032444, 4129776, 16519105, 66076420, 264305680, 1057222719, 4228890876, 16915563504, 67662254017, 270649016068, 1082596064272, 4330384257087, 17321537028348
Offset: 0

Views

Author

Paul Curtz, Dec 14 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {0, 0, 0, 1, 4}; Do[AppendTo[a, 3*a[[ -1]] + 4*a[[ -2]] - a[[ -3]] + 3*a[[ -4]] + 4*a[[ -5]]], {25}]; a (* Stefan Steinerberger, Dec 31 2007 *)
    LinearRecurrence[{3, 4, -1, 3, 4}, {0, 0, 0, 1, 4}, 25] (* G. C. Greubel, Oct 14 2016 *)
    LinearRecurrence[{4,0,-1,4},{0,0,0,1},40] (* Harvey P. Dale, Jan 31 2021 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 4,-1,0,4]^n*[0;0;0;1])[1,1] \\ Charles R Greathouse IV, Oct 14 2016

Formula

a(n+1) - 4*a(n) = hexaperiodic 0, 0, 1, 0, 0, -1, A131531.
a(n) + a(n+3) = 1, 4, 16, 64 = 2^2n = A000302.
a(n) = (1/65)*4^n + (1/15)*(-1)^(n+1) + (2/39)*cos((Pi*n)/3) - (4*sqrt(3)/39) * sin((Pi*n)/3). Or, a(n) = (1/65)*(4^n + [ -1; -4; -16; 1; 4; 16]). - Richard Choulet, Dec 31 2007
O.g.f.: -x^3/[(4*x-1)*(1+x)*(x^2-x+1)]. - R. J. Mathar, Jan 07 2008

Extensions

More terms from Stefan Steinerberger, Dec 31 2007

A191370 a(n) = 2*(1+(-1)^n)/3 + 2*A010892(n-1).

Original entry on oeis.org

1, 2, 4, 2, 4, 8, 22, 44, 88, 170, 340, 680, 1366, 2732, 5464, 10922, 21844, 43688, 87382, 174764, 349528, 699050, 1398100, 2796200, 5592406, 11184812, 22369624, 44739242
Offset: 0

Views

Author

Paul Curtz, Jun 01 2011

Keywords

Comments

a(n) and successive differences define an infinite array:
1, 2, 4, 2, 4, 8, ...
1, 2, -2, 2, 4, 14, ...
1, -4, 4, 2, 10, 8, ...
-5, 8, -2, 8, -2, 14, ...
13, -10, 10, -10, 16, 2, ...
-23, 20, -20, 26, -14, 32, ...
...
Its main diagonal consists of the powers 2^n. The first upper diagonal is a signed sequence of 2's. The second upper diagonal contains essentially A135440.

Crossrefs

Programs

  • Maple
    A010892 := proc(n) op( 1+(n mod 6),[1,1,0,-1,-1,0]) ; end proc:
    A191370 := proc(n) 2^n/3+2*(-1)^n/3+2*A010892(n-1) ; end proc:
    seq(A191370(n),n=0..30) ; # R. J. Mathar, Jun 06 2011
  • Mathematica
    LinearRecurrence[{2,0,-1,2},{1,2,4,2},30] (* Harvey P. Dale, Sep 06 2022 *)

Formula

a(n+3) = 3*2^n - a(n), n >= 0.
a(n+1) - 2*a(n) = -6*A131531(n+1).
a(3*n) = A007613(n), a(1+3*n) = 2*A007613(n), a(2+3*n) = 4*A007613(n).
a(n+6) = a(n) + 21*2^n.
a(n) = ((2^n + 2*(-1)^n)*2^n - 2*i*sqrt(3)*((1+i*sqrt(3))^n - (1-i*sqrt(3))^n))/(3*2^n), where i=sqrt(-1); a(n+1) = 2*(A001045(n) + A010892(n)). - Bruno Berselli, Jun 06 2011
G.f.: ( -1+5*x^3 ) / ( (2*x-1)*(1+x)*(x^2-x+1) ). - R. J. Mathar, Jun 06 2011
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4). - Paul Curtz, Jun 07 2011
a(n) = A113405(n+3) - 5*A113405(n). - R. J. Mathar, Jun 24 2011

A227430 Expansion of x^2*(1-x)^3/((1-2*x)*(1-x+x^2)*(1-3*x+3x^2)).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 29, 45, 90, 220, 561, 1365, 3095, 6555, 13110, 25126, 46971, 87381, 164921, 320001, 640002, 1309528, 2707629, 5592405, 11450531, 23166783, 46333566, 91869970, 181348455, 357913941, 708653429, 1410132405, 2820264810, 5662052980
Offset: 0

Views

Author

Paul Curtz, Jul 11 2013

Keywords

Comments

Consider the binomial transform of 0, 0, 0, 0, 0, 1 (period 6) with its differences:
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n): after 0, it is A192080.
0, 0, 0, 0, 1, 5, 15, 35, 70, 126,... e(n)
0, 0, 0, 1, 4, 10, 20, 35, 56, 85,... f(n)
0, 0, 1, 3, 6, 10, 15, 21, 29, 45,... a(n)
0, 1, 2, 3, 4, 5, 6, 8, 16, 45,... b(n)
1, 1, 1, 1, 1, 1, 2, 8, 29, 85,... c(n)
0, 0, 0, 0, 0, 1, 6, 21, 56, 126,... d(n).
a(n) + d(n) = A024495(n),
b(n) + e(n) = A131708(n),
c(n) + f(n) = A024493(n).
a(n) - d(n) = 0, 0, 1, 3, 6, 9, 9, 0,... A057083(n-2)
b(n) - e(n) = 0, 1, 2, 3, 3, 0, -9, -27,... A057682(n)
c(n) - f(n) = 1, 1, 1, 0, -3, -9, -18, -27,... A057681(n)
d(n) - a(n) = 0, 0, -1, -3, -6, -9, -9, 0,... -A057083(n-2)
e(n) - b(n) = 0, -1, -2, -3, -3, 0, 9, 27,... -A057682(n)
f(n) - c(n) = -1, -1, -1, 0, 3, 9, 18, 27,... -A057681(n).
The first column is A131531(n).
The first two trisections are multiples of 3. Is the third (1, 10, 29,...) mod 9 A029898(n)?

Examples

			a(6)=6*10-15*6+20*3-15*1+6*0=15, a(7)=90-150+120-45+6=21.
		

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,10},40]] (* Harvey P. Dale, Dec 17 2014 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n, 6*k+2))} \\ Seiichi Manyama, Mar 23 2019

Formula

a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) for n>5, a(0)=a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10.
a(n) = A024495(n) - A192080(n-5) for n>4.
G.f.: -(x^5 - 3*x^4 + 3*x^3 - x^2)/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)). - Ralf Stephan, Jul 13 2013
a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k+2). - Seiichi Manyama, Mar 23 2019

Extensions

Definition uses the g.f. of Ralf Stephan.
More terms from Harvey P. Dale, Dec 17 2014

A290968 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) + a(n-5), with a(0)=a(1)=a(2)=1, a(3)=-1 and a(4)=1.

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 5, 5, 9, 11, 21, 33, 57, 89, 145, 231, 377, 609, 989, 1597, 2585, 4179, 6765, 10945, 17713, 28657, 46369, 75023, 121393, 196417, 317813, 514229, 832041, 1346267, 2178309, 3524577, 5702889, 9227465, 14930353, 24157815
Offset: 0

Views

Author

Keywords

Comments

The array of successive differences begins:
1, 1, 1, -1, 1, 1, 5, 5, 9, 11, 21, 33, 57, ...
0, 0, -2, 2, 0, 4, 0, 4, 2, 10, 12, 24, 32, ...
0, -2, 4, -2, 4, -4, 4, -2, 8, 2, 12, 8, 24, ...
-2, 6, -6, 6, -8, 8, -6, 10, -6, 10, -4, 16, 6, ...
8, -12, 12, -14, 16, -14, 16, -16, 16, -14, 20, -10, 24, ...
...
First row is a(n) = 2*A141325(n) - A141325(n+1).
Main diagonal is A099430(n).
The first upper subdiagonal, 1, -2, -2, -8, -14, ..., has -3*A078008(n) as first differences.
The second upper subdiagonal is A000079(n) = 2^n.
a(n) is related to Fibonacci numbers a(n) = A000045(n-2) + period 6: repeat [2, 0, 1, -2, 0, -1].

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2)) )); // G. C. Greubel, Jun 11 2019
    
  • Mathematica
    LinearRecurrence[{1,1,-1,1,1}, {1,1,1,-1,1}, 40]
  • PARI
    my(x='x+O('x^40)); Vec((1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2))) \\ G. C. Greubel, Jun 11 2019
    
  • Sage
    ((1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 11 2019

Formula

G.f.: (1-x^2-2*x^3+x^4)/((1+x)*(1-x+x^2)*(1-x-x^2)).
a(n) ~ phi^(n-2)/sqrt(5), where phi is the golden ratio.
a(n) = (1/2 + sqrt(5)/2)^n*(3*sqrt(5)/10-1/2) - (-1/2 + sqrt(5)/2)^n*(3*sqrt(5)/10 + 1/2)*(-1)^n + 2*sqrt(3)*sin(Pi*(n/3 + 1/3))/3 + (-1)^n. - Eric Simon Jacob, Jul 11 2024

A133511 a(n) = 3 A113405(n)- A113405(n+1).

Original entry on oeis.org

0, 0, -1, 1, 2, 5, 7, 14, 27, 57, 114, 229, 455, 910, 1819, 3641, 7282, 14565, 29127, 58254, 116507, 233017, 466034, 932069, 1864135, 3728270, 7456539, 14913081, 29826162, 59652325, 119304647, 238609294, 477218587, 954437177, 1908874354, 3817748709, 7635497415
Offset: 0

Views

Author

Paul Curtz, Nov 30 2007

Keywords

Formula

2a(n)-a(n+1)=A133513(n).
A113405(n)-a(n)=A131531(n).
O.g.f.: x^2(3x-1)/((1-2x)(1+x)(1-x+x^2)). - R. J. Mathar, Jul 22 2008
a(n+2)=4*(2^n-(-1)^n)/9+A117373(n+2)/3. [From R. J. Mathar, Jul 20 2009]

Extensions

Edited and extended by R. J. Mathar, Jul 22 2008
Previous Showing 11-17 of 17 results.