cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A062332 Primes starting and ending with 1.

Original entry on oeis.org

11, 101, 131, 151, 181, 191, 1021, 1031, 1051, 1061, 1091, 1151, 1171, 1181, 1201, 1231, 1291, 1301, 1321, 1361, 1381, 1451, 1471, 1481, 1511, 1531, 1571, 1601, 1621, 1721, 1741, 1801, 1811, 1831, 1861, 1871, 1901, 1931, 1951, 10061, 10091, 10111, 10141
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Comments

Complement of A208261 (nonprime numbers with all divisors starting and ending with digit 1) with respect to A208262 (numbers with all divisors starting and ending with digit 1). - Jaroslav Krizek, Mar 04 2012
Intersection of A030430 and A045707. - Michel Marcus, Jun 08 2013

Examples

			102701 is a member as it is a prime and the first and the last digits are both 1.
		

Crossrefs

Cf. A208259 (Numbers starting and ending with digit 1).

Programs

  • Haskell
    a062332 n = a062332_list !! (n-1)
    a062332_list = filter ((== 1) . a010051') a208259_list
    -- Reinhard Zumkeller, Jul 16 2014
  • Mathematica
    fl1Q[n_]:=Module[{idn=IntegerDigits[n]},First[idn]==Last[idn]==1]; Select[ Prime[Range[1300]],fl1Q] (* Harvey P. Dale, Apr 30 2012 *)
  • PARI
    { n=-1; t=log(10); forprime (p=2, 5*10^5, if ((p-10*(p\10)) == 1 && (p\10^(log(p)\t)) == 1, write("b062332.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 05 2009
    

Formula

A010051(a(n)) * A000030(a(n)) * (a(n) mod 10) = 1. - Reinhard Zumkeller, Jul 16 2014

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jun 29 2001
Missing term a(36)=1901 added by Harry J. Smith, Aug 05 2009

A208259 Numbers starting and ending with digit 1.

Original entry on oeis.org

1, 11, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 1001, 1011, 1021, 1031, 1041, 1051, 1061, 1071, 1081, 1091, 1101, 1111, 1121, 1131, 1141, 1151, 1161, 1171, 1181, 1191, 1201, 1211, 1221, 1231, 1241, 1251, 1261, 1271, 1281, 1291, 1301, 1311, 1321, 1331
Offset: 1

Views

Author

Jaroslav Krizek, Feb 24 2012

Keywords

Comments

A000030(a(n)) = a(n) mod 10 = 1. - Reinhard Zumkeller, Jul 16 2014

Crossrefs

Intersection of A017281 and A131835. Union of A062332 and A208260.
Supersequence of A208262 (numbers with all divisors starting and ending with digit 1).
Cf. A062332 (primes starting and ending with a digit 1), A208260 (nonprime numbers starting and ending with a digit 1).

Programs

  • Haskell
    a208259 n = a208259_list !! (n-1)
    a208259_list = 1 : map ((+ 1) . (* 10)) a131835_list
    -- Reinhard Zumkeller, Jul 16 2014
  • Mathematica
    Select[Range[2000], First[IntegerDigits[#]] == 1 && Last[IntegerDigits[#]] == 1 &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)

A098174 a(n) is the smallest e > 0 such that the initial digit of n^e = 1 in decimal representation.

Original entry on oeis.org

1, 4, 9, 2, 3, 4, 5, 8, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 3, 3, 3, 3, 3, 3, 5, 7, 9, 25, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 11, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14, 16, 18, 20, 23, 27, 32, 40, 53
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 30 2004

Keywords

Comments

A000030(n^a(n)) = 1; A098175(n) = n^a(n).
From Rémy Sigrist, Jun 25 2018: (Start)
We can extend this sequence to every Gaussian integers as follows:
- for any Gaussian integer z, let f(z) be the least k > 0 such that the initial decimal digit of the real part of z^k equals 1, or -1 if no such k exists,
- naturally f(n) = a(n) for any n > 0,
- apparently f(z) = -1 iff z = 0,
- see Links section for the color plot of f.
(End)

Crossrefs

Programs

  • PARI
    a(n, base=10) = my (nk=n); for (k=1, oo, my (z); logint(nk, base, &z); if (nk\z==1, return (k), nk*=n)) \\ Rémy Sigrist, Jun 21 2018

A175252 Numbers whose digit representation is equal to the digit representation of the initial terms of their sets of divisors in increasing order.

Original entry on oeis.org

1, 12, 124, 135, 1525, 13515, 124816, 12356910, 1243162124, 1525125625, 12478141928, 12510254150, 1234689111216, 1351553159265, 1597717414885, 12356910151830, 13791121336377, 123561015253050, 124510202550100, 135152575125375, 1236103206309618, 123456101215203060, 123569101518304590
Offset: 1

Views

Author

Jaroslav Krizek, Mar 14 2010

Keywords

Comments

From Michel Marcus, Sep 25 2022: (Start)
The term 124 (2^2*31) corresponds to the term of A077352 that is a prime.
The terms 135 (5*3^3), 1525 (5^2*61) and 1525125625 (5^4*2440201) correspond to the terms of A077353 that are powers of primes. (End)
The term 1597717414885 = 5 * 977 * 1741 * 187861, found by David A. Corneth, is especially remarkable for the magnitude of its 2nd smallest prime factor (counting repetitions). - Peter Munn, Oct 10 2022
Define g(n) to be the LCM of the divisors of a(n) that appear in the digit string of a(n) as specified in the definition, and let f(n) = log(g(n))/log(a(n)). Are there are only finitely many n for which f(n) >= f(4) = log(15)/log(135) = 0.55206901...? - Peter Munn, Oct 19 2022
a(26) > 10^23 (there are no terms with 23 digits). - Tim Peters, Dec 21 2022

Examples

			a(1) = 1: d(1) = {1}.
a(2) = 12: d(12) = {1, 2, 3, 4, 6, 12}.
a(3) = 124: d(124) = {1, 2, 4, 31, 62, 124}.
a(4) = 135: d(135) = {1, 3, 5, 9, 15, 27, 45, 135}.
		

Crossrefs

Cf. A037278, A357692. Subsequence of A131835.

Programs

  • PARI
    isok(k) = my(s=""); fordiv(k, d, s=concat(s, Str(d)); if (eval(s)==k, return(1)); if (eval(s)> k, return(0))); \\ Michel Marcus, Sep 22 2022
    
  • PARI
    is(n, {u = 10^5}) = { my(oldu = u, s, d, fe); s = ""; u = min(u, n); fe = factor(n, u); d = divisors(fe); if(#fe~ > 0 && fe[#fe~, 1] > u, d = select(x -> x < fe[#fe~, 1], d); ); for(i = 1, #d, if(d[i] > u, return(is(n, 10*oldu)); ); s=concat(s, Str(d[i])); if(eval(s) == n, return(1)); if(eval(s) > n, return(0)); ); is(n, 10*oldu); } \\ David A. Corneth, Oct 12 2022, Nov 07 2022
    
  • Python
    from sympy import divisors
    def ok(n):
        target, s = str(n), ""
        if target[0] != "1": return False
        for d in divisors(n):
            s += str(d)
            if len(s) >= len(target): return s == target
            elif not target.startswith(s): return False
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Sep 22 2022

Extensions

a(9)-a(10) from Michel Marcus, Sep 22 2022
a(11)-a(12) from Michel Marcus, Oct 02 2022
a(13)-a(15) from Tim Peters, Oct 17 2022
a(16)-a(17) from Giovanni Resta, Oct 20 2022
a(18)-a(20) from Tim Peters, Oct 27 2022
a(21) from Tim Peters, Oct 30 2022
a(22)-a(23) from Tim Peters, Nov 04 2022

A000865 Numbers beginning with letter 'o' in English.

Original entry on oeis.org

1, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A000852.
Subsequence of A131835.

Programs

  • Mathematica
    Select[Range[1000],First[Characters[IntegerName[#,"Words"]]]=="o"&] (* James C. McMahon, Dec 11 2023 *)

A357299 a(n) is the number of divisors of n whose first digit equals the first digit of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3
Offset: 1

Views

Author

Bernard Schott, Sep 23 2022

Keywords

Comments

Similar to A330348, but with last digit.
a(n) >= 1 because there is always a divisor that fits: n.
a(n) >= 2 for n>1 in A131835.

Examples

			The divisors of 26 that start in 2 are 2 and 26, so a(26) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := IntegerDigits[n][[1]]; a[n_] := DivisorSum[n, 1 &, f[#] == f[n] &]; Array[a, 100] (* Amiram Eldar, Sep 23 2022 *)
  • PARI
    a(n) = my(fd=digits(n)[1]); sumdiv(n, d, digits(d)[1] == fd); \\ Michel Marcus, Sep 23 2022
    
  • Python
    from sympy import divisors
    def a(n): f = str(n)[0]; return sum(1 for d in divisors(n) if str(d)[0]==f)
    print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Sep 23 2022

A206288 Nonprime numbers with all divisors starting with digit 1.

Original entry on oeis.org

1, 121, 143, 169, 187, 1111, 1133, 1177, 1199, 1243, 1313, 1331, 1339, 1391, 1397, 1417, 1441, 1469, 1507, 1529, 1573, 1639, 1651, 1661, 1703, 1717, 1727, 1751, 1781, 1793, 1807, 1819, 1837, 1853, 1859, 1903, 1919, 1921, 1937, 1957, 1963, 1969, 1991
Offset: 1

Views

Author

Jaroslav Krizek, Feb 12 2012

Keywords

Comments

Subsequence of A206286, A131835.
Complement of A045707 (primes with first digit 1) with respect to A202287 (numbers with all divisors starting with digit 1).

Examples

			All divisors of 1859 (1, 11, 13, 169, 1859) start with digit 1.
		

Crossrefs

Cf. A045707 (primes with first digit 1), A202287 (numbers with all divisors starting with digit 1).

Programs

  • Maple
    fd1:= n -> n < 2*10^ilog10(n):
    filter:= proc(n) not isprime(n) and andmap(fd1,numtheory:-divisors(n)) end proc:
    select(filter, [1,seq(seq(i,i=10^d+1..2*10^d-1,2),d=1..3)]); # Robert Israel, Mar 13 2019
  • Mathematica
    fQ[n_] := Module[{d = Divisors[n]}, Union[IntegerDigits[#][[1]] & /@ d] == {1}]; Select[Range[1991], ! PrimeQ[#] && fQ[#] &] (* T. D. Noe, Feb 13 2012 *)

A262390 Subsequence of terms starting with 1 in A262356.

Original entry on oeis.org

1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 1000, 111, 112, 120, 113, 130, 114, 140, 115, 150, 116, 160, 117, 170, 118, 180, 119, 190, 1001, 121, 1100, 1002, 122, 123, 1003, 1101, 1010, 1004, 1005, 1006
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 21 2015

Keywords

Comments

A000030(a(n)) = 1;
A262356(A262393(n)) = a(n).

Crossrefs

Programs

  • Haskell
    a262390 n = a262390_list !! (n-1)
    a262390_list = filter ((== 1) . a000030) a262356_list

Extensions

Typo in name corrected by Andrey Zabolotskiy, Sep 22 2017

A206286 Nonprime numbers starting with a digit 1.

Original entry on oeis.org

1, 10, 12, 14, 15, 16, 18, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 158
Offset: 1

Views

Author

Jaroslav Krizek, Feb 12 2012

Keywords

Comments

Complement of A045707 with respect to A131835. Supersequence of A206288.

Crossrefs

Cf. A045707 (primes with first digit 1), A131835 (numbers starting with a digit 1).
Cf. A206288.

Programs

  • Mathematica
    Select[Range[200], ! PrimeQ[#] && IntegerDigits[#][[1]] == 1 &] (* T. D. Noe, Feb 13 2012 *)
  • Python
    from sympy import primepi
    def A206286(n):
        def f(x): return n-1+x+((m:=10**(l:=len(str(x))-1))-(k:=min((m<<1)-1,x))-primepi(m-1)+primepi(k))-sum((m:=10**i)+primepi(m-1)-primepi((m<<1)-1) for i in range(l))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 10 2024

A208260 Nonprime numbers starting and ending with digit 1.

Original entry on oeis.org

1, 111, 121, 141, 161, 171, 1001, 1011, 1041, 1071, 1081, 1101, 1111, 1121, 1131, 1141, 1161, 1191, 1211, 1221, 1241, 1251, 1261, 1271, 1281, 1311, 1331, 1341, 1351, 1371, 1391, 1401, 1411, 1421, 1431, 1441, 1461, 1491, 1501, 1521, 1541, 1551, 1561, 1581, 1591
Offset: 1

Views

Author

Jaroslav Krizek, Feb 24 2012

Keywords

Comments

Complement of A062332 with respect to A208259. Supersequence of A208261 (nonprime numbers with all divisors starting and ending with digit 1).

Crossrefs

Cf. A208259 (number starting and ending with a number 1), A062332 (primes starting and ending with a number 1).

Programs

  • Haskell
    a208260 n = a208260_list !! (n-1)
    a208260_list = filter ((== 0) . a010051') a208259_list
    -- Reinhard Zumkeller, Jul 16 2014
  • Mathematica
    Select[Range[2000], ! PrimeQ[#] && First[IntegerDigits[#]] == 1 && Last[IntegerDigits[#]] == 1 &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
    Join[{1},Select[Range[2000],CompositeQ[#]&&NumberDigit[#,0] == NumberDigit[ #,IntegerLength[ #]-1]==1&]] (* Harvey P. Dale, Aug 01 2021 *)

Formula

(1 - A010051(a(n))) * A000030(a(n)) * (a(n) mod 10) = 1. - Reinhard Zumkeller, Jul 16 2014
Previous Showing 11-20 of 25 results. Next