cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A132247 Twin primes congruent to {1, 11, 13, 17, 19, 29} mod 30.

Original entry on oeis.org

11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, 109, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 239, 241, 269, 271, 281, 283, 311, 313, 347, 349, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 617, 619, 641, 643
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2007

Keywords

Comments

Twin primes that are greater than 7. - Omar E. Pol, Oct 31 2013

Crossrefs

Formula

a(n) = A001097(n+3). - Michel Marcus, Nov 03 2013

A140444 Primes congruent to 1 (mod 14).

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1709, 1723, 1877, 1933, 2003, 2017, 2087
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Comments

From Federico Provvedi, May 24 2018: (Start)
Also primes congruent to 1 (mod 7).
For every prime p > 2, primes congruent to 1 (mod p) are also congruent to 1 (mod 2*p).
Conjecture: The monic polynomial P(x) = (x+1)^7/x - 1/x = ((x+1)^7-1)/x is irreducible but factorizable over Galois field (mod a(n)) with exactly 6 distinct irreducible factors of degree 1. Examples:
P(x) == (5 + x) (6 + x) (7 + x) (10 + x) (14 + x) (23 + x) (mod 29)
P(x) == (3 + x) (9 + x) (23 + x) (28 + x) (33 + x) (40 + x) (mod 43)
P(x) == (24 + x) (27 + x) (35 + x) (40 + x) (42 + x) (52 + x) (mod 71)
P(x) == (5 + x) (8 + x) (65 + x) (84 + x) (86 + x) (98 + x) (mod 113)
... (End).
Primes in A131877. - Eric Chen, Jun 14 2018

Crossrefs

A090613 gives prime index.
Cf. A090614.
Cf. A131877.
Primes congruent to 1 (mod k): A000040 (k=1), A065091 (k=2), A002476 (k=3 and 6), A002144 (k=4), A030430 (k=5 and 10), this sequence (k=7 and 14), A007519 (k=8), A061237 (k=9 and 18), A141849 (k=11 and 22), A068228 (k=12), A268753 (k=13 and 26), A132230 (k=15 and 30), A094407 (k=16), A129484 (k=17 and 34), A141868 (k=19 and 38), A141881 (k=20), A124826 (k=21 and 42), A212374 (k=23 and 46), A107008 (k=24), A141927 (k=25 and 50), A141948 (k=27 and 54), A093359 (k=28), A141977 (k=29 and 58), A142005 (k=31 and 62), A133870 (k=32).

Programs

  • GAP
    Filtered(Filtered([1..2300],n->n mod 14=1),IsPrime); # Muniru A Asiru, Jun 27 2018
  • Magma
    [p: p in PrimesUpTo(3000)|p mod 14 in {1}]; // Vincenzo Librandi, Dec 18 2010
    
  • Maple
    select(isprime,select(n->modp(n,14)=1,[$1..2300])); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Select[Prime[Range[500]], Mod[#, 14] == 1 &]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    is(n)=isprime(n) && n%14==1 \\ Charles R Greathouse IV, Jul 02 2016
    

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 02 2016

Extensions

Simpler definition from N. J. A. Sloane, Jul 11 2008

A282326 Greater of twin primes congruent to 1 (mod 30).

Original entry on oeis.org

31, 61, 151, 181, 241, 271, 421, 571, 601, 661, 811, 1021, 1051, 1231, 1291, 1321, 1621, 1951, 2131, 2311, 2341, 2551, 2731, 2791, 2971, 3001, 3121, 3301, 3331, 3361, 3391, 3541, 3931, 4021, 4051, 4231, 4261, 4651, 4801, 5011, 5101, 5281, 5521, 5641, 5851
Offset: 1

Views

Author

Martin Renner, Feb 11 2017

Keywords

Comments

The union of [A060229 and this sequence] is A132243.
The union of [{5, 7}, A282322, A282324 and this sequence] is the greater of twin primes sequence A006512.
The union of [{3, 5, 7}, A282321 to A060229 and this sequence] is the twin primes sequence A001097.
Number of terms less than 10^k, k=2,3,4,...: 2, 11, 72, 407, 2697, 19507, 146516, ... - Muniru A Asiru, Mar 05 2018

Crossrefs

Programs

  • GAP
    Filtered(List([0..300], k -> 30*k+1), n -> IsPrime(n-2) and IsPrime(n));  # Muniru A Asiru, Mar 05 2018
  • Maple
    select(n -> isprime(n-2) and isprime(n), [seq(30*k+1, k=0..300)]); # Muniru A Asiru, Mar 05 2018
  • Mathematica
    1 + Select[30 Range@ 200, AllTrue[# + {-1, 1}, PrimeQ] &] (* Michael De Vlieger, Mar 26 2018 *)
  • PARI
    list(lim)=my(v=List(),p=2); forprime(q=3,lim, if(q-p==2 && q%30==1, listput(v,q)); p=q); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017
    

A359262 a(n) is the largest number m such that prime(n)^m is in A359260.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 3, 1, 1, 5, 3, 1, 3, 1, 1, 1, 5, 3, 1, 3, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 5, 3, 3, 1, 1, 1, 5, 1, 3, 1, 3, 9, 3, 1, 3, 1, 1, 5, 1, 1, 1, 1, 5, 3, 1, 3, 1, 3, 1, 3, 1, 5, 3, 1, 3, 1, 1, 3, 3, 3, 1, 1, 3, 1, 3, 1, 9, 1, 3, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2022

Keywords

Comments

a(n) is the largest number m such that the arithmetic mean of {1, p, p^2, ..., p^k} is an integer for all k in 1..m.
Apparently, all the terms are of the form prime(k)-2 (A040976). Conjecture: The asymptotic density of the occurrences of prime(k)-2 is (1/s(k-1)-1/s(k)), where s(k) = A005867(k) = phi(prime(k)#), and prime(k)# is the k-th primorial number (A002110).
The sums of the first 10^k terms, for k = 1, 2, ..., are 15, 221, 2291, 23287, 233641, 2337007, 23379901, 233814475, 2338211029, 23382168187, ... . If the mentioned above conjecture is correct, then the asymptotic mean of this sequence is Sum_{k>=1} (prime(k)-2)*(1/s(k-1)-1/s(k)) = 2.33821872365981424748... .
Apparently, the indices of records after n = 1 occur at A000720(A073917(n)) (verified for the first 12 terms of A073917) with record values a(A000720(A073917(n))) = prime(n+1) - 2 (verified for the first 150 terms of A073917).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n], k = 1, r = s = 1}, While[Divisible[s, k], k++; r *= p; s += r]; k - 2]; Array[a, 100]
  • PARI
    a(n) = {my(p = prime(n), k = 1, r = s = 1); while(!(s%k), k++; r *= p; s += r); k - 2; }

Formula

a(n) >= 1 for n >= 2.
a(n) >= 3 iff prime(n) == 1 (mod 6) (prime(n) is in A002476).
Conjectures:
a(n) >= 5 iff prime(n) == 1 (mod 30) (prime(n) is in A132230).
a(n) >= 9 iff prime(n) == 1 (mod 210) (prime(n) is in A073102).
a(n) >= prime(k) - 2 iff prime(n) == 1 (mod A002110(k-1)).

A228541 Numbers having at least one prime factor of the form 30*k + 1.

Original entry on oeis.org

31, 61, 62, 93, 122, 124, 151, 155, 181, 183, 186, 211, 217, 241, 244, 248, 271, 279, 302, 305, 310, 331, 341, 362, 366, 372, 403, 421, 422, 427, 434, 453, 465, 482, 488, 496, 527, 541, 542, 543, 549, 558, 571, 589, 601, 604, 610, 620, 631, 633, 651, 661, 662
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 25 2013

Keywords

Comments

Together with 2, supersequence of A228556.
Conjecture: Numbers m such that abs(Sum_{k=1..m} [k|m]*A008683(k)*(-1)^(k/15)) = 0. - Mats Granvik, Jul 06 2024

Examples

			183 = 3*61 is in the sequence because 30*2 + 1 is prime.
211 is in the sequence because it is prime and 211 = 30*7 + 1.
		

Crossrefs

Supersequence of A132230. Cf. A228556.

Programs

  • PARI
    for(n=31, 662, if(setsearch(Set(factor(n)[, 1]%30), 1)==1, print1(n, ", ")));

A229947 Primes congruent to {1, 11, 13, 17, 19, 29} mod 30.

Original entry on oeis.org

11, 13, 17, 19, 29, 31, 41, 43, 47, 59, 61, 71, 73, 79, 89, 101, 103, 107, 109, 131, 137, 139, 149, 151, 163, 167, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 257, 269, 271, 281, 283, 311, 313, 317, 331, 347, 349, 359, 373, 379, 389
Offset: 1

Views

Author

Omar E. Pol, Oct 27 2013

Keywords

Comments

For twin primes congruent to {1, 11, 13, 17, 19, 29} mod 30 see A132247.
Complement of A132237, primes congruent to 7 or 23 (mod 30), in the set of primes > 5. - M. F. Hasler, Nov 02 2013

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(500) | p mod 30 in {1,11,13,17, 19,29} ]; // Vincenzo Librandi, Apr 05 2015
  • Mathematica
    Select[Flatten[Table[30n + {1, 11, 13, 17, 19, 29}, {n, 0, 11}]], PrimeQ] (* Alonso del Arte, Nov 01 2013 *)
    Select[Prime@Range[100], MemberQ[{1, 11, 13, 17, 19, 29}, Mod[#, 30]] &] (* Vincenzo Librandi, Apr 05 2015 *)
  • PARI
    is(n)=isprime(n) && setsearch([1,11,13,17,19,29], n%30) \\ Charles R Greathouse IV, Mar 08 2015
    

Formula

a(n) ~ 4/3 n log n. - Charles R Greathouse IV, Mar 08 2015

A263770 Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Original entry on oeis.org

7, 5, 7, 17, 13, 29, 19, 41, 73, 31, 97, 191, 43, 89, 97, 109, 61, 311, 137, 73, 149, 241, 337, 181, 197, 103, 313, 109, 331, 229, 257, 397, 139, 281, 151, 457, 317, 821, 337, 349, 181, 547, 193, 389, 199, 401, 1061, 449, 229, 461, 937, 241, 727, 757, 1033, 1321, 271, 1361, 557
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

Least prime q such that q == 1 (mod prime(n) + 1).

Crossrefs

Programs

  • Mathematica
    Table[q = 2; While[! IntegerQ[(Prime[n]^2 + q Prime@ n)/(Prime@ n + 1)], q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)
  • PARI
    a(n) = {p = prime(n); q = 2; while ((p^2 + p*q) % (p + 1), q = nextprime(q+1)); q;} \\ Michel Marcus, Oct 26 2015

Formula

5 is in this sequence because (prime(2)^2 + 5*prime(2))/(prime(2) + 1) = 6 and 5 is prime.

A167857 Numbers whose divisors are represented by an integer polynomial.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 11, 13, 17, 19, 22, 23, 25, 29, 31, 34, 37, 41, 43, 46, 47, 49, 53, 55, 58, 59, 61, 67, 71, 73, 79, 82, 83, 85, 89, 91, 94, 97, 101, 103, 106, 107, 109, 113, 115, 118, 121, 127, 131, 133, 137, 139, 142, 145, 149, 151, 157, 163, 166, 167, 169, 171
Offset: 1

Views

Author

T. D. Noe, Nov 13 2009

Keywords

Comments

That is, these numbers n have the property that there is a polynomial f(x) with integer coefficients whose values at x=0..tau(n)-1 are the divisors of n, where tau(n) is the number of divisors of n.
Every prime has this property, as do 1 and 9, the squares of primes of the form 6k+1, and semiprimes p*q with p and q both primes of the form 3k-1 or 3k+1. Terms of the form p^2*q also appear. We can find terms of the form p^m for any m. For example, 2311^13 is the smallest 13th power that appears. For any m, it seems that p^m appears for p a prime of the form k*m#+1, where m# is the product of the primes up to m. Are there terms with three distinct prime divisors?

Examples

			The divisors of 55 are (1, 5, 11, 55). The polynomial 1+15x-17x^2+6x^3 takes these values at x=0..3.
		

Crossrefs

Cf. A108164, A108166, A112774 (forms of semiprimes)
Cf. A002476 (primes of the form 6k+1)
Cf. A132230 (primes of the form 30k+1)
Cf. A073103 (primes of the form 210k+1)
Cf. A073917 (least prime of the form k*prime(n)#+1)

Programs

  • Mathematica
    Select[Range[1000], And @@ IntegerQ /@ CoefficientList[Expand[InterpolatingPolynomial[Divisors[ # ], x+1]], x] &]
  • PARI
    is(n)=my(d=divisors(n));denominator(content(polinterpolate([0..#d-1],d))) == 1 \\ Charles R Greathouse IV, Jan 29 2016

A260940 a(n) is the smallest index j>n such that g(j)=0 for the sequence g defined (for indices > n) by g(n+1)=n and g(i) = g(i-1) - gcd(i,g(i-1)).

Original entry on oeis.org

3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 19, 21, 29, 31, 31, 31, 37, 37, 41, 43, 43, 47, 43, 43, 53, 43, 41, 59, 61, 61, 61, 67, 67, 71, 73, 73, 71, 79, 79, 83, 79, 79, 89, 79, 79, 79, 97, 97, 101, 103, 103, 107, 109, 109, 113, 109, 109, 113, 109
Offset: 1

Views

Author

Moritz Firsching, Aug 04 2015

Keywords

Comments

a(n) is prime for all n<=10^10 except a(13)=21.
a(n) <= 2n + 1.
a(n) = 2n + 1 if and only if 2n + 1 is prime.
a(n) = 2n - 1 if and only if 2n - 1 is a prime and 2n - 1 = 1 mod 6.
a(n) = 2n - 3 if and only if 2n - 3 is a prime and 2n - 3 = 1 mod 30.

Crossrefs

A186253(n) is a^n(2) where a^n denotes the n-th composition.

Programs

  • PARI
    a(last_a) = {
      local(A=last_a,B=last_a,C=2*last_a+1);
      while(A>0,
        D=divisors(C);
        k1=10*D[2];
        for(j=2,matsize(D)[2],d=D[j];k=((A+1-B+d)/2)%d;
          if(k==0,k=d); if(k<=k1,k1=k;d1=d));
        if(k1-1+d1==A,B=B+1);
        A = max(A-(k1-1)-d1,0);
        B = B + k1;
        C = C - (d1 - 1);
      );
      return(B);
    }
    a(n)={
    my(A=n, B=n, C=2*n+1);
    while(A>0,
    my(k1=oo,d1);
    fordiv(C,d,
    if(d==1,next);
    my(k=((A+1-B+d)/2)%d);
    if(k==0, k=d);
    if(k<=k1, k1=k; d1=d)
    );
    A -= k1 - 1 + d1;
    B += k1 + (A==0);
    C -= d1 - 1;
    );
    B;
    } \\ Charles R Greathouse IV, Nov 04 2015
  • Sage
    def a(n):
        g=n
        n+=1
        while(g!=0):
            g=g-gcd(n,g)
            n+=1
        return n
    

A284659 Numbers n such that numbers 30(n+k) + 1 are prime for k=0..5.

Original entry on oeis.org

18, 74, 4386, 4505, 9314, 10357, 21095, 29621, 38784, 102463, 105200, 116134, 163300, 179967, 186918, 210515, 252830, 348709, 354022, 362345, 396820, 400915, 431568, 438862, 457748, 464118, 470852, 477341, 493070
Offset: 1

Views

Author

Zak Seidov, Mar 31 2017

Keywords

Comments

Numbers n through n+5 are terms in A111175. There are no cases of 7 consecutive numbers in A111175.
All terms are congruent to 4 mod 7.

Examples

			a(1)=18 because 1 + 30*k for k=18..23 are 541, 571, 601, 631, 661, 691 all primes: A000040(k) for k={100, 105, 110, 115, 121, 125}.
		

Crossrefs

Programs

  • Maple
    filter:= t -> andmap(isprime, [seq(30*(t+k)+1, k=0..5)]):
    select(filter, [seq(seq(77*k + i,i=[18,39,53,60,74]),k=0..10000)]); # Robert Israel, Apr 04 2017
  • Mathematica
    Select[Range[18, 1000000, 7], PrimeQ[1 + 30*#] && PrimeQ[1 + 30*(# + 1)] && PrimeQ[1 + 30*(# + 2)] && PrimeQ[1 + 30*(# + 3)] && PrimeQ[1 + 30*(# + 4)] && PrimeQ[1 + 30*(# + 5)] &]
    Select[Range[4,10^6,7],AllTrue[30(#+Range[0,5])+1,PrimeQ]&] (* Harvey P. Dale, Dec 03 2023 *)
Previous Showing 11-20 of 21 results. Next