cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A094967 Right-hand neighbors of Fibonacci numbers in Stern's diatomic series.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 13, 34, 34, 89, 89, 233, 233, 610, 610, 1597, 1597, 4181, 4181, 10946, 10946, 28657, 28657, 75025, 75025, 196418, 196418, 514229, 514229, 1346269, 1346269, 3524578, 3524578, 9227465, 9227465, 24157817, 24157817, 63245986, 63245986, 165580141, 165580141
Offset: 0

Views

Author

Paul Barry, May 26 2004

Keywords

Comments

Fibonacci(2*n+1) repeated. a(n) is the right neighbor of Fibonacci(n+2) in A049456 and A002487 (starts 2,2,5,...). A000045(n+2) = A094966(n) + a(n).
Diagonal sums of A109223. - Paul Barry, Jun 22 2005
The Fi2 sums, see A180662, of triangle A065941 equal the terms of this sequence. - Johannes W. Meijer, Aug 11 2011
a(n) is the last term of (n+1)-th row in Wythoff array A003603. -Reinhard Zumkeller, Jan 26 2012

Crossrefs

Programs

  • GAP
    List([0..50], n -> Fibonacci(n)*(1-(-1)^n)/2 + Fibonacci(n+1)*(1+(-1)^n)/2); # G. C. Greubel, Nov 18 2018
  • Magma
    [IsEven(n) select Fibonacci(n+1) else Fibonacci(n): n in [0..70]]; // Vincenzo Librandi, Nov 18 2018
    
  • Maple
    A094967 := proc(n) combinat[fibonacci](2*floor(n/2)+1) ; end proc: seq(A094967(n), n=0..37);
  • Mathematica
    LinearRecurrence[{0,3,0,-1},{1,1,2,2},40] (* Harvey P. Dale, Apr 05 2015 *)
    f[n_]:=If[OddQ@n, (Fibonacci[n]), Fibonacci[n+1]]; Array[f, 100, 0] (* Vincenzo Librandi, Nov 18 2018 *)
    Table[Fibonacci[n, 0]*Fibonacci[n] + LucasL[n, 0]*Fibonacci[n + 1]/2, {n, 0, 50}] (* G. C. Greubel, Nov 18 2018 *)
  • PARI
    vector(50, n, n--; fibonacci(n)*(1-(-1)^n)/2 + fibonacci(n+1)*(1+(-1)^n)/2) \\ G. C. Greubel, Nov 18 2018
    
  • Sage
    [fibonacci(n)*(1-(-1)^n)/2 + fibonacci(n+1)*(1+(-1)^n)/2 for n in range(50)] # G. C. Greubel, Nov 18 2018
    

Formula

G.f.: (1+x-x^2-x^3)/(1-3*x^2+x^4).
a(n) = Fibonacci(n)*(1-(-1)^n)/2 + Fibonacci(n+1)*(1+(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2)+k, 2*k). - Paul Barry, Jun 22 2005
Starting (1, 2, 2, 5, 5, 13, 13, ...) = A133080 * A000045, where A000045 starts with "1". - Gary W. Adamson, Sep 08 2007
a(n) = Fibonacci(n+1)^(4*k+3) mod Fibonacci(n+2), for any k>-1, n>0. - Gary Detlefs, Nov 29 2010

A114753 First column of A114751.

Original entry on oeis.org

1, 3, 3, 7, 5, 11, 7, 15, 9, 19, 11, 23, 13, 27, 15, 31, 17, 35, 19, 39, 21, 43, 23, 47, 25, 51, 27, 55, 29, 59, 31, 63, 33, 67, 35, 71, 37, 75, 39, 79, 41, 83, 43, 87, 45, 91, 47, 95, 49, 99, 51, 103, 53, 107, 55, 111, 57, 115, 59, 119, 61, 123, 63, 127, 65, 131, 67, 135, 69
Offset: 1

Views

Author

Amarnath Murthy, Nov 15 2005

Keywords

Comments

A114752, (1, 2, 5, 4, 9, 6, ...) + A114753 - (1,1,1,...) = 3n+1: (1, 4, 7, 10, 13, ...). - Gary W. Adamson, Sep 16 2007
First column of table A210530. - Boris Putievskiy, Jan 29 2013

Crossrefs

Programs

Formula

a(2n+1) = 2n+1, a(2n) = 4n-1.
a(n) = 2*a(n-2) - a(n-4). - Joerg Arndt, Apr 02 2011
Equals A133080 * [1,2,3,...]. - Gary W. Adamson, Sep 08 2007
G.f. x*(1+3*x+x^2+x^3) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Apr 04 2012
a(n) = (3*n-1-(n-1)*(-1)^(n-1))/2. - Boris Putievskiy, Jan 29 2013

Extensions

More terms from Joshua Zucker, May 05 2006

A133125 a(n) = (7*3^n - (-3)^n)/6.

Original entry on oeis.org

1, 4, 9, 36, 81, 324, 729, 2916, 6561, 26244, 59049, 236196, 531441, 2125764, 4782969, 19131876, 43046721, 172186884, 387420489, 1549681956, 3486784401, 13947137604, 31381059609, 125524238436, 282429536481, 1129718145924, 2541865828329, 10167463313316
Offset: 0

Views

Author

Gary W. Adamson, Sep 19 2007

Keywords

Comments

A133647 is a companion sequence.

Examples

			a(4) = 3^4 = 81.
a(5) = 324 = 4 * 3^4.
		

Crossrefs

Programs

Formula

A133080 * A000244, where A000244 = (3^0, 3^1, 3^2, ...).
For even n, a(n) = 3^n. For odd n, a(n) = 4 * 3^(n-1).
From R. J. Mathar, Oct 30 2008: (Start)
G.f.: (1+4*x)/((1+3*x)*(1-3*x)).
a(n) = 9*a(n-2). (End)
a(n) = A038754(n)^2. - T. D. Noe, Jun 10 2011
E.g.f.: (3*exp(3*x) + sinh(3*x))/3. - Andrew Howroyd, Jul 03 2024
From Amiram Eldar, Jun 02 2025: (Start)
Sum_{n>=0} 1/a(n) = 45/32.
Sum_{n>=0} (-1)^n/a(n) = 27/32. (End)

Extensions

Name changed by Andrew Howroyd, Jul 03 2024

A133585 Expansion of x - x^2*(2*x+1)*(x^2-2) / ( (x^2-x-1)*(x^2+x-1) ).

Original entry on oeis.org

1, 2, 4, 5, 10, 13, 26, 34, 68, 89, 178, 233, 466, 610, 1220, 1597, 3194, 4181, 8362, 10946, 21892, 28657, 57314, 75025, 150050, 196418, 392836, 514229, 1028458, 1346269, 2692538, 3524578, 7049156, 9227465, 18454930, 24157817
Offset: 1

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Comments

A133585 is a companion to A133586.

Examples

			a(4) = F(5) = 5.
a(5) = 2*a(4) = 2*5 = 10.
		

Crossrefs

Programs

  • Maple
    A133585aux := proc(n,k)
        add(A133566(n,j)*A133080(j,k),j=k..n) ;
    end proc:
    A000045 := proc(n)
        combinat[fibonacci](n) ;
    end proc:
    A133585 := proc(n)
        add(A133585aux(n,j)*A000045(j),j=0..n) ;
    end proc: # R. J. Mathar, Jun 20 2015
  • Mathematica
    CoefficientList[Series[1 - x (2 x + 1) (x^2 - 2)/((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 21 2015 *)
    LinearRecurrence[{0,3,0,-1},{1,2,4,5,10},40] (* Harvey P. Dale, Mar 04 2019 *)
  • PARI
    a(n)=if(n>1,([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,3,0]^(n-2)*[2;4;5;10])[1,1],1) \\ Charles R Greathouse IV, Jun 20 2015

Formula

Equals the matrix-matrix-vector product A133566 * A133080 * A000045 (previous name).
For even-indexed terms, a(n) = F(n+1). For odd-indexed terms (n>1), a(n) = 2*a(n-1), A126358.

Extensions

Previous name corrected and new name from R. J. Mathar, Jun 20 2015

A133086 Row sums of triangle A133085.

Original entry on oeis.org

1, 4, 10, 26, 64, 152, 352, 800, 1792, 3968, 8704, 18944, 40960, 88064, 188416, 401408, 851968, 1802240, 3801088, 7995392, 16777216, 35127296, 73400320, 153092096, 318767104, 662700032, 1375731712, 2852126720, 5905580032, 12213813248, 25232932864
Offset: 0

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Examples

			a(3) = 26 = sum of row 3 of triangle A133085: (12 + 8, + 5 + 1).
a(3) = 26 = (1, 3, 3, 1) dot (1, 3, 3, 7) = (1 + 9 + 9 + 7).
		

Crossrefs

Programs

  • Magma
    [1,4] cat [2^n+3*n*2^(n-2): n in [2..30]]; // Vincenzo Librandi, Oct 21 2017
  • Mathematica
    Join[{1, 4}, Table[2^n + 3*n*2^(n - 2), {n, 2, 50}]] (* G. C. Greubel, Oct 21 2017 *)
    LinearRecurrence[{4,-4},{1,4,10,26},40] (* Harvey P. Dale, Jul 19 2020 *)
  • PARI
    concat([1,4], for(n=2,50, print1(2^n + 3*n*2^(n-2), ", "))) \\ G. C. Greubel, Oct 21 2017
    

Formula

Binomial transform of A114753: (1, 3, 3, 7, 5, 11, 7, 15, ...).
For n>1, a(n) = 2^n + 3*n*2^(n-2). - R. J. Mathar, Apr 04 2012

A133586 Expansion of x*(1+2*x)/( (x^2-x-1)*(x^2+x-1) ).

Original entry on oeis.org

1, 2, 3, 6, 8, 16, 21, 42, 55, 110, 144, 288, 377, 754, 987, 1974, 2584, 5168, 6765, 13530, 17711, 35422, 46368, 92736, 121393, 242786, 317811, 635622, 832040, 1664080, 2178309, 4356618, 5702887, 11405774, 14930352, 29860704, 39088169, 78176338, 102334155
Offset: 1

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Comments

For n>1 A133585(n) + a(n) = A000032(n+1).

Examples

			a(5) = F(6) = 8.
a(6) = 2*a(5) = 2*8 = 16.
		

Crossrefs

Cf. A001906 (bisection), A025169 (bisection), A000032, A133586.

Programs

  • Maple
    A133586aux := proc(n,k)
        add(A133080(n,j)*A133566(j,k),j=k..n) ;
    end proc:
    A000045 := proc(n)
        combinat[fibonacci](n) ;
    end proc:
    A133586 := proc(n)
        add(A133586aux(n,j)*A000045(j),j=0..n) ;
    end proc: # R. J. Mathar, Jun 20 2015
  • Mathematica
    CoefficientList[Series[(1 + 2 x)/((x^2 - x - 1) (x^2 + x - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 21 2015 *)
    LinearRecurrence[{0,3,0,-1},{1,2,3,6},40] (* Harvey P. Dale, Dec 10 2017 *)
  • PARI
    {a(n) = if( n%2, fibonacci(n+1), 2*fibonacci(n))}; /* Michael Somos, Jun 20 2015 */
    
  • PARI
    Vec(x*(1+2*x)/((x^2-x-1)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, Mar 28 2016

Formula

Equals A133080 * A133566 * A000045, where A133080 and A133566 are infinite lower triangular matrices and the Fibonacci sequence as a vector (previous definition).
For odd-indexed terms, a(n) = F(n+1). For even-indexed terms, a(n) = 2*a(n-1).
For n>1 A133585(n) + a(n) = A000032(n+1).
a(n) = A147600(n) + 2*A147600(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (2^(-2-n)*((1-sqrt(5))^n*(-5+sqrt(5)) - (-1-sqrt(5))^n*(-3+sqrt(5)) - (-1+sqrt(5))^n*(3+sqrt(5)) + (1+sqrt(5))^n*(5+sqrt(5))))/sqrt(5). - Colin Barker, Mar 28 2016

Extensions

New definition and A-number in previous definition corrected by R. J. Mathar, Jun 20 2015

A092809 Expansion of (1+x-x^2) / ((1-x^2)*(1-4*x^2)).

Original entry on oeis.org

1, 1, 4, 5, 16, 21, 64, 85, 256, 341, 1024, 1365, 4096, 5461, 16384, 21845, 65536, 87381, 262144, 349525, 1048576, 1398101, 4194304, 5592405, 16777216, 22369621, 67108864, 89478485, 268435456, 357913941, 1073741824, 1431655765, 4294967296, 5726623061
Offset: 0

Views

Author

Paul Barry, Mar 10 2004

Keywords

Comments

Partial sums of A092808.
Apply matrix A133080 to A001045(n+1). - Paul Barry, Oct 08 2009

Crossrefs

Cf. A001045.

Programs

  • PARI
    Vec((1+x-x^2)/((1-x)*(1+x)*(1-2*x)*(1+2*x)) + O(x^40)) \\ Colin Barker, Sep 09 2016
    
  • PARI
    a(n) = if(n%2,2,3)<Charles R Greathouse IV, Sep 09 2016

Formula

a(n) = 5*2^n/6+(-2)^n/6+(-1)^n/6-1/6.
a(2*n) = 4^n = A000302(n).
a(2*n+1) = (4*4^n-1)/3 = A002450(n+1).
From Colin Barker, Sep 09 2016: (Start)
a(n) = 5*a(n-2)-4*a(n-4) for n>3.
G.f.: (1+x-x^2) / ((1-x)*(1+x)*(1-2*x)*(1+2*x))
(End)

A133085 A133084 * A000012.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 12, 8, 5, 1, 24, 19, 15, 5, 1, 48, 42, 37, 17, 7, 1, 96, 89, 83, 48, 28, 7, 1, 192, 184, 177, 121, 86, 30, 9, 1, 384, 375, 367, 283, 227, 101, 45, 9, 1, 768, 758, 749, 629, 545, 293, 167, 47, 11, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

Left column = A003945: (1, 3, 6, 12, 24, 48, ...). Row sums = A133086: (1, 4, 10, 26, 64, 152, ...).

Examples

			First few rows of the triangle are:
1;
3, 1;
6, 3, 1;
12, 8, 5, 1;
24, 19, 15, 5, 1;
48, 42, 37, 17, 7, 1;
96, 89, 83, 48, 28, 7, 1;
...
		

Crossrefs

Formula

A133084 * A000012 as infinite lower triangular matrices.

Extensions

a(28)=1 inserted by Georg Fischer, Oct 10 2021
Previous Showing 21-28 of 28 results.