cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A362687 Binomial(n+p, n) mod n where p=7.

Original entry on oeis.org

0, 0, 0, 2, 2, 0, 2, 3, 1, 8, 1, 0, 1, 10, 9, 5, 1, 10, 1, 10, 18, 12, 1, 15, 6, 14, 1, 12, 1, 12, 1, 9, 12, 18, 13, 10, 1, 20, 27, 19, 1, 0, 1, 12, 10, 24, 1, 45, 8, 36, 18, 14, 1, 28, 12, 23, 39, 30, 1, 48, 1, 32, 10, 17, 14, 12, 1, 18, 24, 60, 1, 19, 1
Offset: 1

Views

Author

Ray Chandler, Apr 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[Binomial[n+7,n],n],{n,90}]

Formula

a(n)=binomial(n+7,n) mod n.
For n > 10122, a(n) = 2*a(n-5040) - a(n-10080).

A362688 Binomial(n+p, n) mod n where p=8.

Original entry on oeis.org

0, 1, 0, 3, 2, 3, 2, 6, 1, 8, 1, 6, 1, 10, 9, 15, 1, 1, 1, 5, 18, 1, 1, 12, 6, 14, 1, 12, 1, 12, 1, 13, 12, 1, 13, 19, 1, 1, 27, 34, 1, 0, 1, 34, 10, 24, 1, 27, 8, 11, 18, 1, 1, 1, 12, 16, 39, 30, 1, 48, 1, 32, 10, 25, 14, 45, 1, 35, 24, 25, 1, 46, 1, 38, 66
Offset: 1

Views

Author

Ray Chandler, Apr 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[Binomial[n+8,n],n],{n,90}]

Formula

a(n)=binomial(n+8,n) mod n.
For n > 645240, a(n) = 2*a(n-322560) - a(n-645120).

A362689 Binomial(n+p, n) mod n where p=9.

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 2, 6, 2, 8, 1, 2, 1, 10, 14, 15, 1, 3, 1, 5, 18, 1, 1, 12, 6, 14, 4, 12, 1, 22, 1, 13, 1, 1, 13, 23, 1, 1, 14, 34, 1, 14, 1, 34, 15, 24, 1, 27, 8, 11, 18, 1, 1, 7, 12, 16, 1, 30, 1, 28, 1, 32, 17, 25, 14, 23, 1, 35, 47, 25, 1, 54, 1, 38, 66
Offset: 1

Views

Author

Ray Chandler, Apr 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[Binomial[n+9,n],n],{n,90}]

Formula

a(n)=binomial(n+9,n) mod n.
For n > 5806081, a(n) = 2*a(n-2903040) - a(n-5806080).

A133882 a(n) = binomial(n+2,n) mod 2^2.

Original entry on oeis.org

1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 2^3 = 8.

Crossrefs

For the sequence regarding "binomial(n+2, n) mod 2" see A133872.
A105198 shifted once left.

Programs

Formula

a(n) = binomial(n+2,2) mod 2^2.
G.f.: (1 + 3*x + 2*x^2 + 2*x^3 + 3*x^4 + x^5)/(1-x^8).
G.f.: (1+x)*(1+2*x+2*x^3+x^4)/(1-x^8) = (1+2*x+2*x^3+x^4)/((1-x)*(1+x^2)*(1+x^4)).
a(n) = A105198(n+1). - R. J. Mathar, Jun 08 2008

A133883 a(n) = binomial(n+3,n) mod 3^2.

Original entry on oeis.org

1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 0, 0, 0, 1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 0, 0, 0, 1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8, 0, 0, 0, 1, 4, 1, 2, 8, 2, 3, 3, 3, 4, 7, 4, 5, 2, 5, 6, 6, 6, 7, 1, 7, 8, 5, 8
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 3^3 = 27.

Crossrefs

For the sequence regarding "Binomial(n+3, n) mod 3" see A133873.

Programs

  • Magma
    [Binomial(n+3,n) mod 9: n in [0..60]]; // Vincenzo Librandi, Jul 20 2016
  • Mathematica
    Table[Mod[Binomial[n + 3, n], 9], {n, 0, 120}] (* or *)
    CoefficientList[Series[(1 + 3 x - 3 x^2 + 2 x^3 + 9 x^4 - 9 x^5 + 3 x^6 + 9 x^7 - 9 x^8 + 4 x^9 + 12 x^10 - 12 x^11 + 5 x^12 + 9 x^13 - 9 x^14 + 6 x^15 + 9 x^16 - 9 x^17 + 7 x^18 + 3 x^19 - 3 x^20 + 8 x^21)/((1 - x) (1 + x^3 + x^6) (1 + x^9 + x^18)), {x, 0, 120}], x] (* Michael De Vlieger, Jul 19 2016 *)
  • PARI
    Vec((1 +3*x -3*x^2 +2*x^3 +9*x^4 -9*x^5 +3*x^6 +9*x^7 -9*x^8 +4*x^9 +12*x^10 -12*x^11 +5*x^12 +9*x^13 -9*x^14 +6*x^15 +9*x^16 -9*x^17 +7*x^18 +3*x^19 -3*x^20 +8*x^21) / ((1 -x)*(1 +x^3 +x^6)*(1 +x^9 +x^18)) + O(x^200)) \\ Colin Barker, Jul 19 2016
    

Formula

a(n) = binomial(n+3,3) mod 3^2.
G.f.: (1 +3*x -3*x^2 +2*x^3 +9*x^4 -9*x^5 +3*x^6 +9*x^7 -9*x^8 +4*x^9 +12*x^10 -12*x^11 +5*x^12 +9*x^13 -9*x^14 +6*x^15 +9*x^16 -9*x^17 +7*x^18 +3*x^19 -3*x^20 +8*x^21) / ((1 -x)*(1 +x^3 +x^6)*(1 +x^9 +x^18)). - Colin Barker, Jul 19 2016

Extensions

Corrected g.f. by Colin Barker, Jul 19 2016

A133886 a(n) = binomial(n+6,n) mod 6.

Original entry on oeis.org

1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3, 3, 0, 0, 4, 4, 4, 0, 3, 3, 0, 0, 0, 4, 4, 4, 3, 3, 0, 0, 0, 0, 4, 4, 1, 3, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 2*6^2 = 72.

Crossrefs

Programs

Formula

a(n) = binomial(n+6,6) mod 6.
G.f.: g(x) = (1+x+4*x^2-6*x^9-6*x^56+4*x^63+x^64+x^65+3*x^8*(1+x)(1-x^56)/(1-x^8)+4*x^9(1+x+x^2)(1-x^54)/(1-x^9))/(1-x^72).
a(n) = a(n-1)-a(n-2)+a(n-8)+a(n-11)-a(n-17)-a(n-20)-a(n-24)+a(n-25)+a(n-29)+ a(n-32)- a(n-38)-a(n-41)+a(n-47)-a(n-48)+a(n-49). - Harvey P. Dale, May 04 2013

A134332 Integer part of the arithmetic mean of the prime factors (counted with multiplicity) of the period numbers defined by A133900.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 2, 3, 3, 11, 2, 13, 3, 3, 2, 17, 2, 19, 2, 4, 4, 23, 2, 5, 5, 3, 3, 29, 3, 31, 2, 5, 5, 5, 2, 37, 6, 6, 2, 41, 3, 43, 4, 3, 7, 47, 2, 7, 3, 7, 4, 53, 2, 7, 3, 8, 8, 59, 2, 61, 9, 4, 2, 8, 3, 67, 5, 9, 3, 71, 2, 73, 9, 4, 5, 8, 4, 79, 2, 3, 9, 83, 3, 9, 11, 10, 3, 89, 2, 9, 6, 11, 12
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Examples

			a(6)=2, since floor(A134331(6)/A133911(6))=floor(12/5)=2.
a(7)=7, since floor(A134331(7)/A133911(7))=floor(14/2)=7.
		

Crossrefs

Formula

a(n)=floor(A134331(n)/A133911(n)) for n>1, defining a(1):=1.
a(n)=n, if n is a prime or 1.

A133873 n modulo 3 repeated 3 times.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 3^2=9.

Crossrefs

Formula

G.f.: (1 + 2*x^3)*(1 - x^3)/((1 - x)*(1 - x^9)).
a(n) = (1 + floor(n/3)) mod 3.
a(n) = A010872(A002264(n+3)).
a(n) = 1+floor(n/3)-3*floor((n+3)/9).
a(n) = (((n+3) mod 9)-(n mod 3))/3.
a(n) = ((n+3-(n mod 3))/3) mod 3.
a(n) = binomial(n+3,n) mod 3 = binomial(n+3,3) mod 3.

A133874 n modulo 4 repeated 4 times.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 4^2 = 16.

Crossrefs

Programs

Formula

a(n) = (1 + floor(n/4)) mod 4.
a(n) = A010873(A002265(n+4)).
a(n) = 1 + floor(n/4) - 4*floor((n+4)/16).
a(n) = (((n+4) mod 16) - (n mod 4))/4.
a(n) = ((n + 4 - (n mod 4))/4) mod 4.
G.f. g(x) = (1 + x + x^2 + x^3 + 2x^4 + 2x^5 + 2x^6 + 2x^7 + 3x^8 + 3x^9 + 3x^10 + 3x^11)/(1-x^16).
G.f. g(x) = ((1-x^4)*(1+2x^4+3x^8))/((1-x)*(1-x^16)).
G.f. g(x) = (3x^16-4x^12+1)/((1-x)*(1-x^4)*(1-x^16)).
G.f. g(x) = (1+2x^4+3x^8)/((1-x)*(1+x^4)*(1+x^8)).

A133884 a(n) = binomial(n+4,n) mod 4.

Original entry on oeis.org

1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 4^2=16.

Examples

			For n=2, binomial(6,2) = 6*5/2 = 15, which is 3 (mod 4) so a(2) = 3. - _Michael B. Porter_, Jul 19 2016
		

Crossrefs

Programs

  • Magma
    [Binomial(n+4,n) mod 4: n in [0..100]]; // Vincenzo Librandi, Jul 15 2016
  • Mathematica
    Table[Mod[Binomial[n + 4, 4], 4], {n, 0, 100}] (* Vincenzo Librandi, Jul 15 2016 *)

Formula

a(n) = binomial(n+4,4) mod 4.
G.f.: (1 + x + 3*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + x^10 + x^11)/(1 - x^16) = (1 + 2*x^2 + 2*x^6 + x^8)/((1 - x)*(1 + x^4)*(1 + x^8)).
a(n) = A000505(n+5) mod 4. - John M. Campbell, Jul 14 2016
a(n) = A000506(n+6) mod 4. - John M. Campbell, Jul 15 2016

Extensions

G.f. corrected by Bruno Berselli, Jul 19 2016
Previous Showing 21-30 of 52 results. Next