cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A124745 Expansion of (1+x)/(1-x^2+x^3).

Original entry on oeis.org

1, 1, 1, 0, 0, -1, 0, -1, 1, -1, 2, -2, 3, -4, 5, -7, 9, -12, 16, -21, 28, -37, 49, -65, 86, -114, 151, -200, 265, -351, 465, -616, 816, -1081, 1432, -1897, 2513, -3329, 4410, -5842, 7739, -10252, 13581, -17991, 23833, -31572, 41824, -55405, 73396, -97229, 128801
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Crossrefs

Row sums of A124744.
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • Mathematica
    LinearRecurrence[{0, 1, -1}, {1, 1, 1}, 100] (* Paolo Xausa, Aug 27 2024 *)

Formula

a(n) = Sum_{k=0..n} C(floor(k/2),n-k)*(-1)^(n-k) = (-1)^n*A078027(n).
a(n) = a(n-2) - a(n-3) with a(0) = a(1) = a(2) = 1. - Taras Goy, Mar 24 2019

A228361 The number of all possible covers of L-length line segment by 2-length line segments with allowed gaps < 2.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456
Offset: 0

Views

Author

Philipp O. Tsvetkov, Aug 21 2013

Keywords

Crossrefs

Second row of A228360.
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^2 - x^3)^-1 (1 + x)^2 x^2 , {x, 0, 100}], x]

Formula

For n>1, a(n) = A134816(n).
G.f.: x^2*(1+x)^2/(1-x^2-x^3).
a(n) = a(n-2) +a(n-3) for n >= 5.
a(n) = A000931(n+5), n>1. - R. J. Mathar, Sep 02 2013

A020720 Pisot sequences E(7,9), P(7,9).

Original entry on oeis.org

7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081, 922111, 1221537
Offset: 0

Views

Author

Keywords

Crossrefs

A subsequence of A000931.
See A008776 for definitions of Pisot sequences.
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 1}, {7, 9, 12}, 50] (* Jean-François Alcover, Aug 31 2018 *)
    CoefficientList[Series[(7 + 9 x + 5 x^2)/(1 - x^2 - x^3), {x, 0, 50}], x] (* Stefano Spezia, Aug 31 2018 *)

Formula

a(n) = a(n-2) + a(n-3) for n>=3. (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016
G.f.: (7+9*x+5*x^2) / (1-x^2-x^3). - Colin Barker, Jun 05 2016

A133034 First differences of Padovan sequence A000931.

Original entry on oeis.org

-1, 0, 1, -1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396
Offset: 0

Views

Author

Omar E. Pol, Nov 05 2007

Keywords

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Cf. A002026.

Programs

  • Mathematica
    LinearRecurrence[{0,1,1},{-1,0,1},60] (* Harvey P. Dale, Dec 14 2013 *)

Formula

a(n+4) = A000931(n).
G.f.: ( 1-2*x^2 ) / ( -1+x^2+x^3 ). - R. J. Mathar, Sep 11 2011
a(n) = a(n-2) + a(n-3) with a(0) = -1, a(1) = 0, a(2) = 1. - Taras Goy, Mar 24 2019

A138890 Non-Padovan numbers.

Original entry on oeis.org

6, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2008

Keywords

Comments

Natural numbers that are not in the Padovan sequence A000931.

Crossrefs

Programs

  • Mathematica
    Complement[Range[0, Max[#]], #] &@ Union@ LinearRecurrence[{0, 1, 1}, {1, 0, 0}, 23] (* Michael De Vlieger, Sep 17 2024 *)
  • Python
    def A138890(n):
        def f(x):
            if x<=1: return n+1
            a, b, c, d = 1, 1, 1, 0
            while c<=x:
                a, b, c = b, c, a+b
                d += 1
            return n+d-1
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Sep 10 2024

A172353 Triangle t(n,k) of Padovan factorial ratios c(n)/(c(k)*c(n-k)) where c(n) = A126772(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 4, 4, 2, 1, 1, 3, 6, 12, 6, 3, 1, 1, 4, 12, 24, 24, 12, 4, 1, 1, 5, 20, 60, 60, 60, 20, 5, 1, 1, 7, 35, 140, 210, 210, 140, 35, 7, 1, 1, 9, 63, 315, 630, 945, 630, 315, 63, 9, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2010

Keywords

Comments

Start from the Padovan sequence A134816 and its partial products A126772, extended by A126772(0)=1. Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 3, 4, 8, 14, 32, 82, 232, 786, 2981,..

Examples

			1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 2, 4, 4, 2, 1;
1, 3, 6, 12, 6, 3, 1;
1, 4, 12, 24, 24, 12, 4, 1;
1, 5, 20, 60, 60, 60, 20, 5, 1;
1, 7, 35, 140, 210, 210, 140, 35, 7, 1;
1, 9, 63, 315, 630, 945, 630, 315, 63, 9, 1;
		

Crossrefs

Programs

  • Mathematica
    Clear[f, c, a, t];
    f[0, a_] := 0; f[1, a_] := 1; f[2, a_] := 1;
    f[n_, a_] := f[n, a] = a*f[n - 2, a] + f[n - 3, a];
    c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
    t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
    Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
    Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]

A054405 Row sums of array T as in A055215.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 47, 63, 84, 112, 149, 198, 263, 349, 463, 614, 814, 1079, 1430, 1895, 2511, 3327, 4408, 5840, 7737, 10250, 13579, 17989, 23831, 31570, 41822, 55403, 73394, 97227, 128799, 170623, 226028, 299424
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

Comments

Partial sums of A134816. [From Omar E. Pol, Jan 02 2009]

Crossrefs

Cf. A134816. [From Omar E. Pol, Jan 02 2009]

Formula

If you add 2 to each term, you get the Padovan sequence A000931. - Gabriel Nivasch (gnivasch(AT)yahoo.com), Oct 15 2003
Partial sums of Padovan sequence A000931(n+5). G.f. : (1+x)/(1-x-x^2+x^4); a(n)=a(n-1)+a(n-2)-a(n-4). - Paul Barry, Jun 21 2004, sign corrected R. J. Mathar, Oct 16 2010

Extensions

Signs in formula corrected by R. J. Mathar, Oct 16 2010

A141683 a(n) = Sum_{k=1..n} b(k)*a(n - k) for n >= 1, where b(n) = b(n-2) + b(n-3) for n >= 3 with b(0) = 0 and b(1) = b(2) = 1.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 41, 88, 189, 406, 872, 1873, 4023, 8641, 18560, 39865, 85626, 183916, 395033, 848491, 1822473, 3914488, 8407925, 18059374, 38789712, 83316385, 178955183, 384377665, 825604416, 1773314929, 3808901426
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 07 2008

Keywords

Comments

Essentially the same as A141015. - R. J. Mathar, Sep 14 2008

Crossrefs

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x^2-x^3)/(1-x-2*x^2-x^3))); // G. C. Greubel, Jun 05 2018
  • Mathematica
    (* b = A000931 *)
    b[0]=0; b[1]=1; b[2]=1; b[n_]:= b[n]= b[n-2] + b[n-3];
    a[1]=1; a[n_]:= a[n]= Sum[b[k]*a[n-k], {k,n-1}];
    Table[a[n], {n, 35}]
    (* or *)
    LinearRecurrence[{1, 2, 1}, {1, 1, 2, 4}, 31] (* Georg Fischer, Mar 23 2019 *)
  • PARI
    x='x+O('x^35); Vec(x*(1-x^2-x^3)/(1-x-2*x^2-x^3)) \\ G. C. Greubel, Jun 05 2018
    

Formula

a(n) = Sum_{k=1..n} b(k)*a(n - k) for n >= 1, where b(n) = b(n-2) + b(n-3) for n >= 3 with b(0) = 0 and b(1) = b(2) = 1. [That is, b(n) = A000931(n+4) = A078027(n+6) = A134816(n) = A182097(n+1). - Petros Hadjicostas, Aug 09 2020]
From Colin Barker, Feb 01 2012: (Start)
a(n) = a(n-1) + 2*a(n-2) + a(n-3), n > 4.
G.f.: x*(1 - x^2 - x^3)/(1 - x - 2*x^2 - x^3). (End)
a(n) = A000930(2*n - 3) for n >= 3. - Georg Fischer, Mar 23 2019

A228360 Table read by antidiagonals: T(l,L) is the number of all possible covers of L-length line segment by l-length line segments with allowed gaps < l.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 1, 4, 3, 1, 0, 0, 0, 0, 1, 5, 3, 2, 0, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 0, 1, 9, 6, 4, 2, 0, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Philipp O. Tsvetkov, Aug 21 2013

Keywords

Comments

Second row is A228361 which also corresponds to Padovan's spiral numbers A134816 for n>1.
Third row is A228362.
T(l,L) is also the number of compositions of L where parts do not exceeds l and where are no two adjacent parts less than l.
T(2,5) = 3: [2,2,1], [2,1,2], [1,2,2]
T(2,9) = 9: [2,2,2,2,1], [2,2,2,1,2], [2,2,1,2,2], [2,1,2,2,2], [1,2,2,2,2], [2,1,2,1,2,1], [1,2,2,1,2,1], [1,2,1,2,2,1], [1,2,1,2,1,2]
T(3,8) = 6: [3,3,2], [3,1,3,1], [3,2,3], [1,3,3,1], [1,3,1,3], [2,3,3]

Examples

			Table starts:
0, 1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1, ...
0, 0, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, ...
0, 0, 0, 1, 2, 3, 3, 4, 6, 8, 10, 13, 18, 24, 31, ...
0, 0, 0, 0, 1, 2, 3, 4, 4, 5,  7, 10, 13, 16, 20, ...
0, 0, 0, 0, 0, 1, 2, 3, 4, 5,  5,  6,  8, 11, 15, ...
0, 0, 0, 0, 0, 0, 1, 2, 3, 4,  5,  6,  6,  7,  9, ...
0, 0, 0, 0, 0, 0, 0, 1, 2, 3,  4,  5,  6,  7,  7, ...
0, 0, 0, 0, 0, 0, 0, 0, 1, 2,  3,  4,  5,  6,  7, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 1,  2,  3,  4,  5,  6, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  1,  2,  3,  4,  5, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  1,  2,  3,  4, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  1,  2,  3, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  1,  2, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  1, ...
.....................................................
		

Programs

  • Mathematica
    Gf[l_, z] := (1 - Sum[z^i, {i, l, 2 l - 1}])^-1*Sum[z^i, {i, 0, l - 1}]^2*z^l
    T[l_, L_] := CoefficientList[Series[Gf[l, z], {z, 0, 100}], z][[L + 1]]
    Table[T[n - b + 1, b - 1], {n, 1, 30}, {b, n, 1, -1}] // Flatten

Formula

For all l>=1:
G.f.: (1 - Sum[x^i, {i, l, 2 l - 1}])^-1*Sum[x^i, {i, 0, l - 1}]^2*x^l.
G.f. for l=1: x/(1-x).
G.f. for l=2: x^2*(1+x)^2/(1-x^2-x^3).
G.f. for l=3: x^3*(1 + x + x^2)^2/(1 - x^3 - x^4 - x^5).
For l>1, L>=0:
c[k, l, m] = Sum[(-1)^i binomial[k - 1 - i*l, m - 1] binomial[m, i], {i, 0, floor[(k - m)/l]}] // number of compositions of k into exactly m parts which do not exceed l.
a[L, l, m] = Sum[ binomial[m + 1, m + 1 - j]*c[L - l*m, l - 1, j], {j, 0, m + 1}] //the number of all possible covers of L-length line segment by m l-length line segments.
T[l, L] := Sum[a[L, l, j], {j, 1, ceiling[L/l]}].

A238389 Expansion of (1+x)/(1-x^2-3*x^3).

Original entry on oeis.org

1, 1, 1, 4, 4, 7, 16, 19, 37, 67, 94, 178, 295, 460, 829, 1345, 2209, 3832, 6244, 10459, 17740, 29191, 49117, 82411, 136690, 229762, 383923, 639832, 1073209, 1791601, 2992705, 5011228, 8367508, 13989343, 23401192, 39091867, 65369221, 109295443
Offset: 0

Views

Author

Sergio Falcon, Feb 26 2014

Keywords

Examples

			a(3) = 3*a(0)+a(1) = 4; a(4) = 3*a(1)+a(2) = 4; a(5) = 3*a(2)+a(3) = 7.
		

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else Self(n-2) +3*Self(n-3): n in [1..41]]; // G. C. Greubel, May 09 2021
    
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <3|1|0>>^n.<<(1$3)>>)[(1$2)]:
    seq(a(n), n=0..44);  # Alois P. Heinz, May 09 2021
  • Mathematica
    (* First program *)
    For[j=0, j<3, j++, a[j] = 1]
    For[j=3, j<51, j++, a[j] = 3a[j-3] + a[j-2]]
    Table[a[j], {j, 0, 50}]
    (* Second program *)
    CoefficientList[Series[(1+x)/(1-x^2-3x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 16 2014 *)
    LinearRecurrence[{0,1,3},{1,1,1},40] (* Harvey P. Dale, Feb 28 2023 *)
  • PARI
    Vec((1+x)/(1-x^2-3*x^3)+O(x^99)) \\ Charles R Greathouse IV, Mar 06 2014
    
  • Sage
    def A238389_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)/(1-x^2-3*x^3) ).list()
    A238389_list(40) # G. C. Greubel, May 09 2021

Formula

a(0)=1, a(1)=1, a(2)=1; for n>2, a(n) = a(n-2) + 3*a(n-3).
a(2n) = Sum_{j=0}^{n/3} binomial(n-j,2j)*3^(2j) + Sum_{j=0}^{(n-2)/3} binomial(n-1-j,2j+1)*3^(2j+1).
a(2n+1) = Sum_{j=0}^{n/3} binomial(n-j,2j)*3^(2j) + Sum_{j=0}^{(n-1)/3} binomial(n-j,2j+1)*3^(2j+1).
a(n) = |A106855(n)| + |A106855(n-1)| . - R. J. Mathar, Mar 13 2014

Extensions

Terms corrected by Charles R Greathouse IV, Mar 06 2014
Previous Showing 11-20 of 23 results. Next