cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A219795 Sum of the absolute values of the antidiagonals of the triangle A135929(n) companion. See the comment.

Original entry on oeis.org

2, 2, 2, 2, 3, 3, 5, 7, 10, 11, 16, 23, 33, 44, 58, 81, 114, 158, 212, 293, 407, 565, 777, 1064, 1471, 2036, 2813, 3863, 5334, 7370, 10183, 14046, 19356, 26726, 36909, 50955, 70251, 96977, 133886, 184841, 255092
Offset: 0

Views

Author

Paul Curtz, Nov 28 2012

Keywords

Comments

The companion to A135929(n) is the triangle
2;
2, 0;
2, 0, 1;
2, 0, -1, 0;
2, 0, -3, 0, -1;
2, 0, -5, 0, 0, 0;
2, 0, -7, 0, 3, 0, 1;
2, 0, -9, 0, 8, 0, 1, 0;
(A192011(n) beginning with 2 instead of -1).
Consider a(1),a(5),a(10),a(14), that is, a(A193910(n) -1).
a(1)+a(4)-a(5) = 2, a(5)+a(8)-a(9) = 2, a(10)+a(13)-a(14) = 2, a(14)+a(17)-a(18) = 4, a(19)+a(22)-a(23) = 6, a(23)+a(26)-a(27) = 14, yields 2,2,2,4,6,14,24,60,... = 2*A047749(n) or 2, followed with A116637(n+1).

Examples

			a(0)=2, a(1)=2, a(2)=2+0, a(3)=2+0, a(4)=2+0+1, a(5)=2+0+1.
		

Programs

  • Maple
    A219795 := proc(n)
        if n=0 then
            2;
        else
            add(abs(A192011(n-k,k)),k=0..floor(n/2)) ;
        end if;
    end proc: # R. J. Mathar, Jan 06 2013

Formula

a(n) = sum abs ( [k=0..floor(n/2)] A192011(n-k,k) ), a(0)=2.

Extensions

a(24)-a(40) from Jean-Francois Alcover, Nov 28 2012

A194084 Triangle read by rows: a(n)=A135929(n) + A192011(n). Row n gives coefficients of polynomials BC(n,x) in order of decreasing exponents.

Original entry on oeis.org

0, 3, 0, 3, 0, 3, 3, 0, 0, 0, 3, 0, -3, 0, -3, 3, 0, -6, 0, -3, 0, 3, 0, -9, 0, 0, 0, 3, 3, 0, -12, 0, 6, 0, 6, 0, 3, 0, -15, 0, 15, 0, 6, 0, -3, 3, 0, -18, 0, 27, 0, 0, 0, -9, 0
Offset: 0

Views

Author

Paul Curtz, Aug 14 2011

Keywords

Comments

0,
3, 0,
3, 0, 3,
3, 0, 0, 0,
3, 0, -3, 0, -3,
3, 0, -6, 0, -3, 0.
Multiples of 3.
Row sum (from the second) is period 6: 3*A057079(n),"from" A057083 (scaled Chebyshev U(n,x)).
If a(0)=-3, a(n)=3*A192174(n).

Examples

			a(0)=1-1=0, a(1)=1+2=3, a(2)=0+0=0.
		

Formula

BC(0,x)=0, BC(1,x)=3*x, BC(2,x)=3*x^2+3, BC(n,x)=x*BC(n-1,x) - BC(n-2,x), n > 2.

A137276 Triangle T(n,k), read by rows: T(n,k)= 0 if n-k odd. T(n,k)= 2*(-1)^((n-k)/2)*(2k-n)/(n+k)*binomial((n+k)/2,(n-k)/2) if n-k even.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 1, 0, 1, -2, 0, 0, 0, 1, 0, -3, 0, -1, 0, 1, 2, 0, -3, 0, -2, 0, 1, 0, 5, 0, -2, 0, -3, 0, 1, -2, 0, 8, 0, 0, 0, -4, 0, 1, 0, -7, 0, 10, 0, 3, 0, -5, 0, 1, 2, 0, -15, 0, 10, 0, 7, 0, -6, 0, 1, 0, 9, 0, -25, 0, 7, 0, 12, 0, -7, 0, 1, -2, 0, 24, 0, -35, 0, 0, 0, 18, 0, -8, 0, 1, 0, -11, 0, 49, 0, -42, 0, -12, 0
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Mar 13 2008

Keywords

Comments

Polynomial coefficients of P(n,x) in increasing powers, read by rows, where P(0,x)=1, P(1,x)=x, P(2,x)=2+x^2, P(3,x)=x+x^3, P(4,x)=-2+x^4, and P(n,x) = x*P(n-1,x) - P(n-2,x) for n>=5.
The row-reversed version of A135929.
Row sums are repeating 1, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1..., see A138034 and A119910.

Examples

			{1}, = 1
{0, 1}, = x
{2, 0, 1}, = 2+x^2
{0, 1, 0, 1}, = x+x^3
{-2, 0, 0, 0, 1}, = -2+x^4
{0, -3, 0, -1, 0, 1}, = -3x-x^3+x^5
{2, 0, -3, 0, -2, 0, 1},
{0, 5, 0, -2, 0, -3, 0, 1},
{-2, 0, 8, 0, 0, 0, -4, 0, 1},
{0, -7, 0, 10, 0, 3, 0, -5, 0, 1},
{2, 0, -15, 0, 10, 0, 7, 0, -6, 0, 1},
{0, 9, 0, -25, 0, 7, 0, 12, 0, -7, 0, 1}
		

Crossrefs

Programs

  • Maple
    A137276 := proc(n,k) local nmk,npk; if n = 0 then 1; elif (n-k) mod 2 <> 0 then 0; else nmk := (n-k)/2 ; npk := (n+k)/2 ; (-1)^nmk*(2*k-n)/npk*binomial(npk,nmk) ; fi; end:
    seq( seq(A137276(n,k),k=0..n),n=0..13) ;

Formula

T(n,k)= 0 if n-k odd. T(n,k)= 2*(-1)^((n-k)/2)*(2k-n)/(n+k)*binomial((n+k)/2,(n-k)/2) if n-k even.
P(n,x) = x*P(n-1,x)-P(n-2,x), n>=5.
P(n,2*x) = -2*T(n,x)+4*x*U(n-1,x), where T(n,x) is A053120 and U(n,x) is A053117.

Extensions

Fourth row inserted by the Associate Editors of the OEIS, Aug 27 2009

A138034 Expansion of (1+3*x^2)/(1-x+x^2).

Original entry on oeis.org

1, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3, 2, -1, -3, -2, 1, 3
Offset: 0

Views

Author

Karem Boubaker (mmbb11112000(AT)yahoo.fr), Mar 01 2008; corrected Mar 03 2008

Keywords

Comments

Essentially a duplicate of A119910: 1, followed by A119910. - Joerg Arndt, Nov 14 2014

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 3*x^2)/(1 - x + x^2), {x, 0, 100}], x] (* Wesley Ivan Hurt, Jan 15 2017 *)
    LinearRecurrence[{1,-1},{1,1,3},120] (* Harvey P. Dale, Jun 14 2024 *)

Formula

a(n) = A119910(n), n>=1.
G.f.: (1+3*x^2)/(1-x+x^2). a(n)=a(n-1)-a(n-2), n>2.

A135936 Irregular triangle read by rows: row n gives coefficients of Boubaker polynomial B_n(x) in order of decreasing exponents (another version).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 0, -2, 1, -1, -3, 1, -2, -3, 2, 1, -3, -2, 5, 1, -4, 0, 8, -2, 1, -5, 3, 10, -7, 1, -6, 7, 10, -15, 2, 1, -7, 12, 7, -25, 9, 1, -8, 18, 0, -35, 24, -2, 1, -9, 25, -12, -42, 49, -11, 1, -10, 33, -30, -42, 84, -35, 2, 1, -11, 42, -55, -30, 126, -84, 13, 1, -12, 52, -88, 0, 168, -168, 48, -2, 1, -13, 63, -130, 55, 198, -294
Offset: 0

Views

Author

N. J. A. Sloane, Mar 09 2008

Keywords

Comments

See A135929 and A138034 for further information.

Examples

			The Boubaker polynomials B_0(x), B_1(x), B_2(x), ... are:
  1
  x
  x^2    + 2
  x^3    + x
  x^4             - 2
  x^5    - x^3  - 3*x
  x^6  - 2*x^4  - 3*x^2    + 2
  x^7  - 3*x^5  - 2*x^3  + 5*x
  x^8  - 4*x^6           + 8*x^2    - 2
  x^9  - 5*x^7  + 3*x^5 + 10*x^3  - 7*x
  ...
		

Crossrefs

Cf. A138034.

Programs

  • Maple
    A135936 := proc(n,m) coeftayl( coeftayl( (1+3*t^2)/(1-x*t+t^2),t=0,n), x=0,m) ; end: for n from 0 to 25 do for m from n to 0 by -2 do printf("%d, ",A135936(n,m)) ; od; od; # R. J. Mathar, Mar 11 2008
  • Mathematica
    T[n_, m_] := SeriesCoefficient[SeriesCoefficient[
       (1+3*t^2)/(1-x*t+t^2), {t, 0, n}], {x, 0, m}];
    Table[T[n, m], {n, 0, 25}, {m, n, 0, -2}] // Flatten (* Jean-François Alcover, Mar 11 2023, after R. J. Mathar *)

Formula

Conjectures from Thomas Baruchel, Jun 03 2018: (Start)
T(n,m) = 4*A115139(n+1,m) - 3*A132460(n,m).
T(n,m) = (-1)^m * (binomial(n-m, m) - 3*binomial(n-m-1, m-1)). (End)

Extensions

More terms from R. J. Mathar, Mar 11 2008

A167541 a(n) = -(n - 4)*(n - 5)*(n - 12)/6.

Original entry on oeis.org

2, 5, 8, 10, 10, 7, 0, -12, -30, -55, -88, -130, -182, -245, -320, -408, -510, -627, -760, -910, -1078, -1265, -1472, -1700, -1950, -2223, -2520, -2842, -3190, -3565, -3968, -4400, -4862, -5355, -5880, -6438, -7030, -7657, -8320, -9020, -9758, -10535, -11352
Offset: 6

Views

Author

Jamel Ghanouchi, Nov 06 2009

Keywords

Comments

Essentially the same as A111396.
The coefficient of x^(n-6) of the Polynomial B_n(x) defined in A135929.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{2,5,8,10},50] (* Harvey P. Dale, May 27 2012 *)

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x^6*(2 - 3*x)/(x - 1)^4.
a(n) = -A111396(n-12) for n > 11. - Bruno Berselli, Oct 02 2018

Extensions

Minor edits by N. J. A. Sloane, Nov 09 2009
Definition simplified, sequence extended by R. J. Mathar, Nov 12 2009

A167373 Expansion of (1+x)*(3*x+1)/(1+x+x^2).

Original entry on oeis.org

1, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1, -2, 3, -1
Offset: 0

Views

Author

Jamel Ghanouchi, Nov 02 2009

Keywords

Comments

Bisection of A138034.
Also row 2n of A137276 or A135929.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 22.

Crossrefs

Programs

  • Maple
    A167373 := proc(n)
        option remember;
        if n < 4 then
            op(n+1,[1,3,-1,-2]) ;
        else
            procname(n-3) ;
        end if;
    end proc:
    seq(A167373(n),n=0..20) ; # R. J. Mathar, Feb 06 2020
  • Mathematica
    CoefficientList[Series[(1 + x)*(3*x + 1)/(1 + x + x^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 12 2016 *)
    LinearRecurrence[{-1,-1},{1,3,-1},120] (* Harvey P. Dale, Apr 05 2023 *)

Formula

G.f.: (1+x)*(3*x+1)/(1+x+x^2).
a(n) = a(n-3), n>4.
a(n) = - a(n-1) - a(n-2) for n>2.
a(n) = 4*sin(2*n*Pi/3)/sqrt(3)-2*cos(2*n*Pi/3) for n>0 with a(0)=1. - Wesley Ivan Hurt, Jun 12 2016

Extensions

Edited by R. J. Mathar, Nov 03 2009
Further edited and extended by Simon Plouffe, Nov 23 2009
Recomputed by N. J. A. Sloane, Dec 20 2009

A167544 a(n) = (n-3)*(n-8)/2.

Original entry on oeis.org

-2, -3, -3, -2, 0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173
Offset: 4

Views

Author

Jamel Ghanouchi, Nov 06 2009

Keywords

Comments

Essentially a duplicate of A055998.

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x^4*(-2 + 3*x)/(1-x)^3.
a(n) = A055998(n-8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n - 6 (with a(4)=-2). - Vincenzo Librandi, Dec 05 2010
a(n) = A027379(n-8) for n >= 9. - Georg Fischer, Oct 24 2018
E.g.f.: (1/2)*( (24 -10*x + x^2)*exp(x) - (24 + 14*x + 3*x^2) ). - G. C. Greubel, Jul 30 2022

Extensions

Edited and extended by R. J. Mathar, Nov 12 2009

A137289 Triangle read by rows: T(n,k) = (-1)^(n-k)*(C(k+n-1,n-k)-2*C(k+n-1,n-k-1)) for n>=0 and 0<=k<=n.

Original entry on oeis.org

-1, 2, 1, -2, 0, 1, 2, -3, -2, 1, -2, 8, 0, -4, 1, 2, -15, 10, 7, -6, 1, -2, 24, -35, 0, 18, -8, 1, 2, -35, 84, -42, -30, 33, -10, 1, -2, 48, -168, 168, 0, -88, 52, -12, 1, 2, -63, 300, -462, 198, 143, -182, 75, -14, 1, -2, 80, -495, 1056, -858, 0, 455, -320, 102, -16, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 14 2008

Keywords

Comments

Previous name was: "Expansion of certain polynomials; see formula."

Examples

			{-1},
{2, 1},
{-2, 0, 1},
{2, -3, -2, 1},
{-2, 8, 0, -4, 1},
{2, -15, 10, 7, -6, 1},
{-2, 24, -35, 0, 18, -8, 1},
{2, -35, 84, -42, -30, 33, -10, 1},
{-2, 48, -168, 168,0, -88, 52, -12, 1},
{2, -63, 300, -462, 198, 143, -182, 75, -14,1},
{-2, 80, -495, 1056, -858, 0, 455, -320, 102, -16, 1}
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> (-1)^(n-k)*(binomial(k+n-1,n-k)-2*binomial(k+n-1,n-k-1)):
    seq(seq(T(n,k), k=0..n), n=0..10); # Peter Luschny, May 15 2016
  • Mathematica
    B[x, 0] = -1; B[x, 1] = x; B[x, 2] = 2 + x^2; B[x, 4] = -2 + x^4; B[ x, 3] = x + x^3; B[x_, n_] := B[x, n] = x*B[x, n - 1] - B[x, n - 2]; a = Table[CoefficientList[B[x, n] /. x -> Sqrt[y], y], {n, 0, 20, 2}]; Flatten[a]

Formula

B(x, 0) = -1, B(x, 2) = x^2 + 2, B(x, 3) = x^3 + x, B(x, 4) = x^4 - 2, and B(x, n) = x*B(x, n - 1) - B(x, n - 2) for n>=2, expand B(sqrt(x), 2*n).

Extensions

Edited by N. J. A. Sloane, Jan 05 2009
Edited by Joerg Arndt, Nov 15 2014
New name and changed a(1) to -1 by Peter Luschny, May 15 2016

A161718 Expansion of (1+3*x^2)/(1+x)^2.

Original entry on oeis.org

1, -2, 6, -10, 14, -18, 22, -26, 30, -34, 38, -42, 46, -50, 54, -58, 62, -66, 70, -74, 78, -82, 86, -90, 94, -98, 102, -106, 110, -114, 118, -122, 126, -130, 134, -138, 142, -146, 150, -154, 158, -162, 166, -170, 174, -178, 182, -186, 190, -194, 198, -202, 206, -210, 214, -218, 222, -226, 230, -234
Offset: 0

Views

Author

Pr Mosbah Amlouk (Mosbah.Amlouk(AT)fsb.rnu.tn), Jun 17 2009

Keywords

Crossrefs

Cf. A016825, A111284 (unsigned version), A135929, A137276.

Programs

  • Mathematica
    CoefficientList[Series[(1+3*x^2)/(1+x)^2,{x,0,80}],x] (* or *) LinearRecurrence[ {-2,-1},{1,-2,6},80] (* Harvey P. Dale, Mar 19 2016 *)
  • PARI
    x='x+O('x^99); Vec((1+3*x^2)/(1+x)^2) \\ Altug Alkan, Apr 17 2018

Formula

From R. J. Mathar, Aug 27 2009: (Start)
a(n) = -2*a(n-1)-a(n-2), n>3.
G.f.: (1+3*x^2)/(1+x)^2.
a(n) = 4*(-1)^n*n+2*(-1)^(n+1) = (-1)^n*A016825(n-1), n>0. (End)
E.g.f.: 3 - 2*exp(-x)*(1 + 2*x). - Stefano Spezia, Feb 02 2023

Extensions

Spurious commas in sequence deleted by N. J. A. Sloane, Aug 02 2009
Offset corrected, extended by R. J. Mathar, Aug 27 2009
Edited by Joerg Arndt, Sep 04 2011
Showing 1-10 of 19 results. Next