cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 86 results. Next

A271971 Decimal expansion of (6/Pi^2) Sum_{p prime} 1/(p(p+1)), a Meissel-Mertens constant related to the asymptotic density of certain sequences of integers.

Original entry on oeis.org

2, 0, 0, 7, 5, 5, 7, 2, 2, 0, 1, 9, 2, 6, 5, 9, 8, 6, 9, 9, 6, 2, 5, 0, 7, 2, 3, 1, 1, 4, 4, 0, 4, 7, 6, 5, 8, 5, 3, 5, 3, 5, 5, 5, 5, 3, 5, 2, 5, 6, 1, 9, 1, 6, 1, 5, 9, 7, 6, 3, 2, 9, 8, 3, 6, 5, 2, 5, 4, 0, 7, 4, 7, 4, 7, 9, 6, 4, 9, 7, 9, 1, 2, 1, 1, 9, 0, 9, 4, 2, 6, 8, 4, 5, 0, 3, 5, 9, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Comments

This is the density of A060687, the numbers with one 2 and the rest 1s in the exponents of its prime factorization. - Charles R Greathouse IV, Aug 03 2016

Examples

			0.200755722019265986996250723114404765853535555352561916...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.2 Meissel-Mertens Constants, p. 95.

Crossrefs

Programs

  • Mathematica
    digits = 100; S = (6/Pi^2)*NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5]; RealDigits[ S, 10, digits] // First
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumalt(k=2, (-1)^k*primezeta(k))*6/Pi^2 \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    sumeulerrat(1/(p*(p+1)))/zeta(2) \\ Amiram Eldar, Mar 18 2021

Formula

Equals (6/Pi^2)*A179119.

A211991 Difference between the arithmetic derivative of n and the sum of proper divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, -1, 0, 5, 2, -1, 0, 0, 0, -1, -1, 17, 0, 0, 0, 2, -1, -1, 0, 8, 4, -1, 14, 4, 0, -11, 0, 49, -1, -1, -1, 5, 0, -1, -1, 18, 0, -13, 0, 8, 6, -1, 0, 36, 6, 2, -1, 10, 0, 15, -1, 28, -1, -1, 0, -16, 0, -1, 10, 129, -1, -17, 0, 14, -1, -15, 0, 33
Offset: 1

Views

Author

Omar E. Pol, Dec 18 2012

Keywords

Comments

Observations: at least the first 50 indices of nonnegative terms are also the first 50 terms of A212165. Also at least the first 28 indices of negative terms are also the first 28 terms of A212168, since A212168 is the complement of A212165.

Crossrefs

Programs

  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Table[dn[n] - (DivisorSigma[1, n] - n), {n, 100}] (* T. D. Noe, Dec 27 2012 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A211991(n) = (A003415(n) - (sigma(n)-n)); \\ Antti Karttunen, Mar 08 2018

Formula

a(n) = A003415(n) - A001065(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (A136141 - A013661 + 1) / 2 = 0.0641113... . - Amiram Eldar, Mar 17 2024

A324833 Decimal expansion of eta_2, a constant related to the asymptotic density of certain sets of residues.

Original entry on oeis.org

1, 2, 9, 0, 3, 8, 9, 2, 5, 8, 9, 7, 8, 0, 7, 5, 5, 6, 4, 9, 7, 4, 3, 4, 8, 6, 3, 4, 8, 1, 7, 7, 5, 8, 7, 7, 6, 3, 8, 4, 9, 3, 2, 1, 4, 1, 9, 9, 2, 0, 5, 6, 8, 8, 3, 0, 0, 4, 1, 2, 7, 0, 4, 5, 6, 3, 9, 8, 0, 6, 6, 5, 7, 3, 0, 9, 1, 7, 0, 3, 9, 8, 9, 9, 9, 7, 1, 6, 7, 7, 8, 3, 5, 9, 8, 1, 9, 3, 4, 3, 8
Offset: 0

Views

Author

Jean-François Alcover, Mar 17 2019

Keywords

Examples

			0.12903892589780755649743486348177587763849321419920568830041270456398...
		

Crossrefs

Cf. A154945 (eta_1), A324834 (eta_3), A324835 (eta_4), A324836 (eta_5).

Programs

  • Mathematica
    digits = 101; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[eta2 = Sum[n PrimeZetaP[2n + 2], {n, 1, m}], 10, digits][[1]]; rd[m0]; rd[m = 2m0]; While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[eta2, digits] ]; rd[m]

Formula

Sum_{p prime} 1/(p^2-1)^2.
Sum_{n>0} n P(2n+2) where P is the prime zeta P function.
Equals - A136141/4 + A086242/4 - A179119/4 + A382554/4. - Artur Jasinski, Mar 31 2025

A345001 a(n) = sigma(n) + n' - 2n, where n' is the arithmetic derivative of n (A003415) and sigma is the sum of divisors (A000203).

Original entry on oeis.org

-1, 0, -1, 3, -3, 5, -5, 11, 1, 5, -9, 20, -11, 5, 2, 31, -15, 24, -17, 26, 0, 5, -21, 56, -9, 5, 13, 32, -27, 43, -29, 79, -4, 5, -10, 79, -35, 5, -6, 78, -39, 53, -41, 44, 27, 5, -45, 140, -27, 38, -10, 50, -51, 93, -22, 100, -12, 5, -57, 140, -59, 5, 29, 191, -28, 73, -65, 62, -16, 63, -69, 207, -71, 5, 29, 68
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Coincides with A003415 only on perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    A003415[n_] := If[n < 2, 0, Module[{f = FactorInteger[n]}, If[PrimeQ[n], 1, Total[n*f[[All, 2]]/f[[All, 1]]]]]];
    a[n_] := DivisorSigma[1, n] + A003415[n] - 2 n;
    Array[a, 80] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A345001(n) = (sigma(n)+A003415(n)-(2*n));

Formula

a(n) = A003415(n) - A033879(n) = A000203(n) + A003415(n) - 2*n.
a(n) = A001065(n) + A168036(n).
a(n) = A344999(n) / A048250(n) = A345049(n) / A173557(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 + A136141 - 2 = 0.418090735898... . - Amiram Eldar, Dec 08 2023

A361205 a(n) = 2*omega(n) - bigomega(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, -1, 0, 2, 1, 1, 1, 2, 2, -2, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, -1, 1, 1, 3, 1, -3, 2, 2, 2, 0, 1, 2, 2, 0, 1, 3, 1, 1, 1, 2, 1, -1, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 2, 1, 2, 1, -4, 2, 3, 1, 1, 2, 3, 1, -1, 1, 2, 1, 1, 2, 3, 1, -1, -2, 2, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Crossrefs

Without doubling omega we have -A046660.
Positions of 0's are A067801, counted by A239959.
Positions of negative terms are A360558, counted by A360254.
Positions of nonpositive terms are A361204, counted by A237363.
Positions of positive terms are A361393, counted by A237365.
Positions of nonnegative terms are A361395, counted by A361394.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    Table[2*PrimeNu[n]-PrimeOmega[n],{n,100}]

Formula

Additive with a(p^e) = 2 - e. - Amiram Eldar, Mar 26 2023
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = 2*A077761 - A083342 = A077761 - A136141 = -0.511659... . - Amiram Eldar, Oct 01 2023

A190121 Partial sums of the arithmetic derivative function A003415.

Original entry on oeis.org

0, 1, 2, 6, 7, 12, 13, 25, 31, 38, 39, 55, 56, 65, 73, 105, 106, 127, 128, 152, 162, 175, 176, 220, 230, 245, 272, 304, 305, 336, 337, 417, 431, 450, 462, 522, 523, 544, 560, 628, 629, 670, 671, 719, 758, 783, 784, 896, 910, 955, 975, 1031, 1032, 1113, 1129
Offset: 1

Views

Author

Giorgio Balzarotti, May 04 2011

Keywords

Comments

See A229523 for a(10^n). - M. F. Hasler, Sep 25 2013

Examples

			1'+2'+3'+4'+5' = 0+1+1+4+1 = 7 -> a(5) = 7.
		

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(der(i),i=1..j),j=1..100);
  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; Table[d[n], {n, 1, 55}] // Accumulate (* Jean-François Alcover, Feb 21 2014 *)
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[A003415[k], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)
  • PARI
    s=0; A190121=vector(199,n,s+=A003415(n))
    
  • PARI
    A190121(n)=sum(k=1,n,A003415(k)) \\ M. F. Hasler, Sep 26 2013

Formula

a(n)-> ~ 0.374*n^2 as n-> oo [Barbeau] (note: 1+2+3+4+5 ...-> ~ 1/2*n^2; the similarity stands also for higher power of the terms of sum). - Giorgio Balzarotti, Nov 14 2013
a(n) ~ c * n^2, where c = (1/2) * Sum_{p prime} 1/(p*(p-1)) = A136141 / 2 = 0.3865783345... . This constant was given by Barbeau (1961) but with the wrong value 0.374. - Amiram Eldar, Oct 06 2023

A275699 Excess of numbers that are not squarefree.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 1, 3, 1, 1, 3, 3, 1, 2, 1, 1, 4, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 1, 6, 1, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 3, 2, 2, 1, 2, 5, 2, 1, 3, 1, 1, 3, 1, 4, 1, 4, 2, 1
Offset: 1

Views

Author

Felix Fröhlich, Aug 05 2016

Keywords

Comments

The "excess" of a number is the number of prime divisors with multiplicity (the Omega function, A001222) minus the number of distinct prime divisors (the omega function, A001221). A046660(n) gives the excess of n.
Since squarefree numbers have no excess, this sequence is essentially A046660 with the 0's removed.

Examples

			Since 16 = 2^4, 16 has four prime divisors, but only one distinct divisor. Hence Omega(16) - omega(16) = 4 - 1 = 3. As 16 is the fifth number that is not squarefree, its corresponding 3 is a(5) in this sequence.
17 is prime and thus has no excess and no corresponding term in this sequence.
18 = 2 * 3^2, Omega(18) - omega(18) = 3 - 2 = 1, thus a(6) = 1.
		

Crossrefs

Programs

  • Mathematica
    DeleteCases[Table[PrimeOmega[n] - PrimeNu[n], {n, 200}], 0] (* Alonso del Arte, Aug 05 2016 *)
  • PARI
    for(n=1, 200, if(bigomega(n)!=omega(n), print1(bigomega(n)-omega(n), ", ")))

Formula

a(n) = A046660(A013929(n)).
Asymptotic mean: lim_{m->oo} (1/m) Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p-1)) / (1-6/Pi^2) = A136141/A229099 = 1.9719717... - Amiram Eldar, Feb 10 2021

A325359 Numbers of the form p^y * 2^z where p is an odd prime, y >= 2, and z >= 0.

Original entry on oeis.org

9, 18, 25, 27, 36, 49, 50, 54, 72, 81, 98, 100, 108, 121, 125, 144, 162, 169, 196, 200, 216, 242, 243, 250, 288, 289, 324, 338, 343, 361, 392, 400, 432, 484, 486, 500, 529, 576, 578, 625, 648, 676, 686, 722, 729, 784, 800, 841, 864, 961, 968, 972, 1000, 1058
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

Also Heinz numbers of integer partitions that are not hooks but whose augmented differences are hooks, where the Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k), and a hook is a partition of the form (n,1,1,...,1). The enumeration of these partitions by sum is given by A325459.

Examples

			The sequence of terms together with their prime indices begins:
     9: {2,2}
    18: {1,2,2}
    25: {3,3}
    27: {2,2,2}
    36: {1,1,2,2}
    49: {4,4}
    50: {1,3,3}
    54: {1,2,2,2}
    72: {1,1,1,2,2}
    81: {2,2,2,2}
    98: {1,4,4}
   100: {1,1,3,3}
   108: {1,1,2,2,2}
   121: {5,5}
   125: {3,3,3}
   144: {1,1,1,1,2,2}
   162: {1,2,2,2,2}
   169: {6,6}
   196: {1,1,4,4}
   200: {1,1,1,3,3}
		

Crossrefs

Positions of 2's in A325355.
Numbers n such that n does not belong to A093641 but A325351(n) does.

Programs

  • Maple
    N:= 1000: # to get terms <= N
    P:= select(isprime, [seq(i,i=3..floor(sqrt(N)),2)]):
    B:= map(proc(p) local y;  seq(p^y, y=2..floor(log[p](N))) end proc, P):
    sort(map(proc(t) local z;  seq(2^z*t, z=0..ilog2(N/t)) end proc, B)); # Robert Israel, May 03 2019
  • Mathematica
    Select[Range[1000],MatchQ[FactorInteger[2*#],{{2,},{?(#>2&),_?(#>1&)}}]&]

Formula

Sum_{n>=1} 1/a(n) = 2 * Sum_{p prime} 1/(p*(p-1)) - 1 = 2 * A136141 - 1 = 0.54631333809959025572... - Amiram Eldar, Sep 30 2020

A324834 Decimal expansion of eta_3, a constant related to the asymptotic density of certain sets of residues.

Original entry on oeis.org

0, 3, 9, 0, 7, 2, 4, 0, 5, 7, 3, 5, 5, 7, 4, 7, 9, 1, 8, 8, 7, 6, 5, 9, 5, 0, 3, 3, 2, 0, 4, 2, 2, 9, 7, 6, 3, 8, 6, 6, 8, 4, 8, 3, 8, 2, 4, 4, 7, 7, 3, 3, 6, 0, 3, 5, 6, 7, 5, 4, 0, 6, 6, 0, 3, 2, 6, 9, 1, 7, 5, 8, 3, 7, 6, 1, 9, 2, 4, 9, 2, 0, 2, 9, 8, 1, 7, 9, 1, 0, 0, 6, 9, 0, 7, 6, 8, 0, 0, 5, 6, 2, 3
Offset: 0

Views

Author

Jean-François Alcover, Mar 17 2019

Keywords

Examples

			0.03907240573557479188765950332042297638668483824477336035675406603269...
		

Crossrefs

Cf. A154945 (eta_1), A324833 (eta_2), A324835 (eta_4), A324836 (eta_5).

Programs

  • Mathematica
    digits = 102; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[eta3 = Sum[n (n+1)/2 PrimeZetaP[2 n + 4], {n, 1, m}] , 10, digits][[1]]; rd[m0]; rd[m = 2 m0]; While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[eta3, digits]]; rd[m]

Formula

Sum_{p prime} 1/(p^2-1)^3.
Sum_{n>0} (n(n+1)/2) P(2n+4) where P is the prime zeta P function.
Equals 3*A136141/16 - 3*A086242/16 + A380840/8 + 3*A179119/16 - 3*A382554/16 - A382555/8. - Artur Jasinski, Mar 31 2025

A152441 Decimal expansion of Sum_{primes p} 1/(p^2*(p-1)).

Original entry on oeis.org

3, 2, 0, 9, 0, 9, 2, 4, 9, 0, 0, 8, 7, 2, 9, 6, 2, 9, 3, 5, 7, 8, 2, 4, 0, 9, 5, 0, 2, 3, 6, 9, 4, 4, 6, 1, 4, 4, 5, 5, 0, 9, 9, 9, 2, 8, 4, 3, 2, 9, 3, 6, 2, 6, 5, 7, 4, 5, 8, 7, 1, 3, 7, 0, 0, 5, 5, 4, 4, 0, 0, 1, 1, 2, 5, 3, 2, 2, 5, 2, 3, 3, 8, 4, 8, 4, 1, 2, 1, 4, 4, 6, 8, 4, 1, 3, 9, 6, 0, 1, 0, 6, 1, 3
Offset: 0

Views

Author

R. J. Mathar, Dec 04 2008

Keywords

Comments

Generally, sum_p 1/(p^s*(p-1)) equals A136141 minus the sum over all prime zeta functions with index 2 to s (see A085964 to A085969).

Examples

			0.320909249008729629357824095023694461445509992843293626574587137005544001125... = 1/(4*1) + 1/(9*2) + 1/(25*4) + 1/(49*6) + ...
		

Crossrefs

Programs

  • Mathematica
    digits = 104; sp = NSum[PrimeZetaP[n], {n, 3, Infinity},  WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
  • PARI
    sumeulerrat(1/(p^2*(p-1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals A136141 minus A085548 .
Equals Sum_{n>=1} 1/A246549(n). - Amiram Eldar, Oct 27 2020

Extensions

More digits from Jean-François Alcover, Sep 11 2015
Previous Showing 21-30 of 86 results. Next