A210990
Total area of the shadows of the three views of the shell model of partitions with n regions.
Original entry on oeis.org
0, 3, 10, 21, 26, 44, 51, 75, 80, 92, 99, 136, 143, 157, 166, 213, 218, 230, 237, 260, 271, 280, 348, 355, 369, 378, 403, 410, 427, 438, 526, 531, 543, 550, 573, 584, 593, 631, 640, 659, 672, 683, 804, 811, 825, 834, 859, 866, 883, 894, 938, 949, 958
Offset: 0
For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
. A182181(11) = 35 A182244(11) = 66
.
. 6 * * * * * 6
. 3 3 P * * 3 * * 3
. 2 4 a * * * 4 * 2
. 2 2 2 r * 2 * 2 * 2
. 1 5 t * * * * 5 1
. 1 2 3 i * * 3 * 2 1
. 1 1 4 t * * * 4 1 1
. 1 1 2 2 i * 2 * 2 1 1
. 1 1 1 3 o * * 3 1 1 1
. 1 1 1 1 2 n * 2 1 1 1 1
. 1 1 1 1 1 1 s 1 1 1 1 1 1
. <------- Regions ------ ------------> N
. L
. a 1
. r * 2
. g * * 3
. e * 2
. s * * * 4
. t * * 3
. * * * * 5
. p * 2
. a * * * 4
. r * * 3
. t * * * * * 6
. s
. A182727(11) = 35
.
The areas of the shadows of the three views are A182244(11) = 66, A182181(11) = 35 and A182727(11) = 35, therefore the total area of the three shadows is 66+35+35 = 136, so a(11) = 136.
A228354
Indices (k) of partitions in the list of compositions of j in colexicographic order, if 1<=k<=2^(j-1), j>=1.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 22, 24, 28, 32, 44, 48, 56, 64, 86, 88, 92, 96, 112, 120, 128, 172, 176, 184, 192, 220, 224, 240, 256, 342, 344, 348, 352, 368, 376, 384, 440, 448, 480, 496, 512, 684, 688, 696, 704, 732, 736, 752, 768, 880, 888, 896, 960, 992, 1024
Offset: 1
For j = 5 consider the list of compositions of 5 in colexicographic order (see A228525). The indices of the partitions are 1, 2, 4, 6, 8, 12, 16 which are the first A000041(5) terms of this sequence, see below:
---------------------------------------------------------
. Compositions Partitions
k of 5 of 5 n a(n)
---------------------------------------------------------
1 1+1+1+1+1 * ............... * 1+1+1+1+1 1 1
2 2+1+1+1 * ............... * 2+1+1+1 2 2
3 1+2+1+1 ........... * 3+1+1 3 4
4 3+1+1 * .../ .......... * 2+2+1 4 6
5 1+1+2+1 / ......... * 4+1 5 8
6 2+2+1 * .../ / ...... * 3+2 6 12
7 1+3+1 / / ... * 5 7 16
8 4+1 * .../ / /
9 1+1+1+2 / /
10 2+1+2 / /
11 1+2+2 / /
12 3+2 * .../ /
13 1+1+3 /
14 2+3 /
15 1+4 /
16 5 * .../
.
Written as an irregular triangle the sequence begins:
1;
2;
4;
6,8;
12,16;
22,24,28,32;
44,48,56,64;
86,88,92,96,112,120,128;
172,176,184,192,220,224,240,256;
342,344,348,352,368,376,384,440,448,480,496,512;
684,688,696,704,732,736,752,768,880,888,896,960,992,1024;
...
A194714
Sum of all odd-indexed parts minus the sum of all even-indexed parts of all partitions of n, with the parts written in nondecreasing order.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 9, 14, 18, 26, 32, 48, 57, 82, 102, 138, 169, 230, 278, 370, 450, 584, 709, 914, 1102, 1400, 1692, 2124, 2555, 3186, 3818, 4720, 5649, 6926, 8269, 10078, 11989, 14526, 17249, 20782, 24603, 29508, 34843, 41600, 49008, 58258, 68468, 81098
Offset: 1
a(6) = 37 - 29 = 8 because the partitions of 6 written in nondecreasing order are
.
. 6 = 6
. 3 - 3 = 0
. 2 - 4 = -2
. 2 - 2 + 2 = 2
. 1 - 5 = -4
. 1 - 2 + 3 = 2
. 1 - 1 + 4 = 4
. 1 - 1 + 2 - 2 = 0
. 1 - 1 + 1 - 3 = -2
. 1 - 1 + 1 - 1 + 2 = 2
. 1 - 1 + 1 - 1 + 1 - 1 = 0
----------------------------------
. 20 - 21 + 14 - 7 + 3 - 1 = 8
A207034
Sum of all parts minus the number of parts of the n-th partition in the list of colexicographically ordered partitions of j, if 1<=n<=A000041(j).
Original entry on oeis.org
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 5, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 9, 6, 7, 7, 8, 7, 8, 8, 9, 8, 8, 9, 9, 9, 10, 6, 7, 7, 8, 8, 8, 9, 8, 9, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 10, 11, 7, 8, 8, 9, 8, 9
Offset: 1
Illustration of initial terms, n = 1..15. Consider the last 15 rows of the tail of the last section of the set of partitions in colexicographic order of any integer >= 8. The tail contains at least A000041(8-1) = 15 parts of size 1. a(n) is also the number of dots in the n-th row of the diagram.
----------------------------------
n Tail a(n)
----------------------------------
15 1 . . . . . . 6
14 1 . . . . . 5
13 1 . . . . . 5
12 1 . . . . 4
11 1 . . . . . 5
10 1 . . . . 4
9 1 . . . . 4
8 1 . . . 3
7 1 . . . . 4
6 1 . . . 3
5 1 . . . 3
4 1 . . 2
3 1 . . 2
2 1 . 1
1 1 0
----------------------------------
Written as a triangle:
0;
1;
2;
2,3;
3,4;
3,4,4,5;
4,5,5,6;
4,5,5,6,6,6,7;
5,6,6,7,6,7,7,8;
5,6,6,7,7,7,8,7,8,8,8,9;
6,7,7,8,7,8,8,9,8,8,9,9,9,10;
6,7,7,8,8,8,9,8,9,9,9,10,8,9,9,10,9,10,10,10,11;
...
Consider a matrix [j X A000041(j)] in which the rows represent the partitions of j in colexicographic order (see A211992). Every part of every partition is located in a cell of the matrix. We can see that a(n) is the number of empty cells in row n for any integer j, if A000041(j) >= n. The number of empty cells in row n equals the sum of all parts minus the number of parts in the n-th partition of j.
Illustration of initial terms. The smallest part of every partition is located in the last column of the matrix.
---------------------------------------------------------
. j: 1 2 3 4 5 6
n a(n)
---------------------------------------------------------
1 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 | . 2 . 2 1 . 2 1 1 . 2 1 1 1 . 2 1 1 1 1
3 2 | . . 3 . . 3 1 . . 3 1 1 . . 3 1 1 1
4 2 | . . 2 2 . . 2 2 1 . . 2 2 1 1
5 3 | . . . 4 . . . 4 1 . . . 4 1 1
6 3 | . . . 3 2 . . . 3 2 1
7 4 | . . . . 5 . . . . 5 1
8 3 | . . . 2 2 2
9 4 | . . . . 4 2
10 4 | . . . . 3 3
11 5 | . . . . . 6
...
Illustration of initial terms. In this case the largest part of every partition is located in the first column of the matrix.
---------------------------------------------------------
. j: 1 2 3 4 5 6
n a(n)
---------------------------------------------------------
1 0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 | 2 . 2 1 . 2 1 1 . 2 1 1 1 . 2 1 1 1 1 .
3 2 | 3 . . 3 1 . . 3 1 1 . . 3 1 1 1 . .
4 2 | 2 2 . . 2 2 1 . . 2 2 1 1 . .
5 3 | 4 . . . 4 1 . . . 4 1 1 . . .
6 3 | 3 2 . . . 3 2 1 . . .
7 4 | 5 . . . . 5 1 . . . .
8 3 | 2 2 2 . . .
9 4 | 4 2 . . . .
10 4 | 3 3 . . . .
11 5 | 6 . . . . .
...
Cf.
A135010,
A138121,
A141285,
A182703,
A194548,
A196087,
A207031,
A207032,
A207035,
A211992,
A228716,
A230440.
A220482
Triangle read by rows: T(j,k) in which row j lists the parts in nondecreasing order of the j-th region of the set of partitions of n, with 1<=j<=A000041(n).
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 4, 3, 1, 1, 1, 1, 1, 2, 5, 2, 2, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6, 3, 2, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7, 2, 2, 4, 3, 2, 2, 3, 6, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 8
Offset: 1
First 15 rows of the irregular triangle are
1;
1, 2;
1, 1, 3;
2;
1, 1, 1, 2, 4;
3;
1, 1, 1, 1, 1, 2, 5;
2;
2, 4;
3;
1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6;
3;
2, 5;
4;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 7;
A228350
Triangle read by rows: T(j,k) is the k-th part in nonincreasing order of the j-th region of the set of compositions (ordered partitions) of n in colexicographic order, if 1<=j<=2^(n-1) and 1<=k<=A006519(j).
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 6, 5, 4, 4, 3, 3
Offset: 1
---------------------------------------------------------
. Diagram Triangle
Compositions of of compositions (rows)
. of 5 regions and regions (columns)
----------------------------------------------------------
. _ _ _ _ _
. 5 |_ | 5
. 1+4 |_|_ | 1 4
. 2+3 |_ | | 2 3
. 1+1+3 |_|_|_ | 1 1 3
. 3+2 |_ | | 3 2
. 1+2+2 |_|_ | | 1 2 2
. 2+1+2 |_ | | | 2 1 2
. 1+1+1+2 |_|_|_|_ | 1 1 1 2
. 4+1 |_ | | 4 1
. 1+3+1 |_|_ | | 1 3 1
. 2+2+1 |_ | | | 2 2 1
. 1+1+2+1 |_|_|_ | | 1 1 2 1
. 3+1+1 |_ | | | 3 1 1
. 1+2+1+1 |_|_ | | | 1 2 1 1
. 2+1+1+1 |_ | | | | 2 1 1 1
. 1+1+1+1+1 |_|_|_|_|_| 1 1 1 1 1
.
Also the structure could be represented by an isosceles triangle in which the n-th diagonal gives the n-th region. For the composition of 4 see below:
. _ _ _ _
. 4 |_ | 4
. 1+3 |_|_ | 1 3
. 2+2 |_ | | 2 2
. 1+1+2 |_|_|_ | 1 1 2
. 3+1 |_ | | 3 1
. 1+2+1 |_|_ | | 1 2 1
. 2+1+1 |_ | | | 2 1 1
. 1+1+1+1 |_|_|_|_| 1 1 1 1
.
Illustration of the four sections of the set of compositions of 4:
. _ _ _ _
. |_ | 4
. |_|_ | 1+3
. |_ | | 2+2
. _ _ _ |_|_|_ | 1+1+2
. |_ | 3 | | 1
. _ _ |_|_ | 1+2 | | 1
. _ |_ | 2 | | 1 | | 1
. |_| 1 |_| 1 |_| 1 |_| 1
.
.
Illustration of initial terms. The parts of the eight regions of the set of compositions of 4:
--------------------------------------------------------
\j: 1 2 3 4 5 6 7 8
k
--------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 |_|1 |_ |2 |_|1 |_ |3 |_|1 |_ |2 |_|1 |_ |4
2 |_|1 |_ |2 |_|1 |_ |3
3 | |1 | |2
4 |_|1 |_ |2
5 | |1
6 | |1
7 | |1
8 |_|1
.
Triangle begins:
1;
2,1;
1;
3,2,1,1;
1;
2,1;
1;
4,3,2,2,1,1,1,1;
1;
2,1;
1;
3,2,1,1;
1;
2,1;
1;
5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
...
.
Also triangle read by rows T(n,m) in which row n lists the parts of the n-th section of the set of compositions of the integers >= n, ordered by regions. Row lengths give A045623. Row sums give A001792 (see below):
[1];
[2,1];
[1],[3,2,1,1];
[1],[2,1],[1],[4,3,2,2,1,1,1,1];
[1],[2,1],[1],[3,2,1,1],[1],[2,1],[1],[5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1];
Cf.
A001787,
A001792,
A011782,
A029837,
A045623,
A065120,
A070939,
A135010,
A141285,
A187816,
A187818,
A193870,
A206437,
A228347,
A228348,
A228349,
A228351,
A228366,
A228367,
A228370,
A228371,
A228525,
A228526.
A210980
Total area of the shadows of the three views of the shell model of partitions, version "Tree", with n shells.
Original entry on oeis.org
0, 3, 10, 21, 42, 69, 123, 189, 304, 458, 693, 998, 1474, 2067, 2927, 4056, 5613, 7595, 10335, 13782, 18411, 24276, 31944, 41583, 54152, 69762, 89758, 114668, 146181, 185083, 234051, 294126, 368992, 460669, 573906, 711865, 881506, 1087023, 1338043
Offset: 0
For n = 7 the shadows of the three views of the shell model of partitions version "tree" with seven shells looks like this:
. | Partitions
. A194805(7) = 25 A066186(7) = 105 | of 7
. |
. 1 * * * * * * 1 | 7
. 2 * * * 1 * * 2 | 4+3
. 2 * * * * 1 * 2 | 5+2
. 3 * * 1 * 2 * 3 | 3+2+2
. 1 2 * * * * * 1 2 | 6+1
. 2 3 * * 1 * * 2 3 | 3+3+1
. 2 3 * * * 1 * 2 3 | 4+2+1
. 3 4 * 1 * 2 * 3 4 | 2+2+2+1
. 3 1 * * * * 1 2 3 | 5+1+1
. 4 2 * * 1 * 2 3 4 | 3+2+1+1
. 1 4 * * * 1 2 3 4 | 4+1+1+1
. 2 5 * 1 * 2 3 4 5 | 2+2+1+1+1
. 5 1 * * 1 2 3 4 5 | 3+1+1+1+1
. 1 6 * 1 2 3 4 5 6 | 2+1+1+1+1+1
. 7 1 2 3 4 5 6 7 | 1+1+1+1+1+1+1
. ---------------------------------- |
. |
. * * * * 1 * * * * |
. * * * 1 2 * * * * |
. * 1 * * 2 1 * * * |
. * * 1 2 2 * * 1 * |
. * * * * 2 2 1 * * |
. 1 2 2 3 2 * * * * |
. 2 3 2 2 1 |
. |
. A194804(7) = 59 |
.
Note that, as a variant, in this case each part is labeled with its position in the partition.
The areas of the shadows of the three views are A066186(7) = 105, A194804(7) = 59 and A194805(7) = 25, therefore the total area of the three shadows is 105+59+25 = 189, so a(7) = 189.
A210991
Total area of the shadows of the three views of the shell model of partitions with n regions.
Original entry on oeis.org
0, 3, 9, 18, 21, 35, 39, 58, 61, 67, 71, 99, 103, 110, 115, 152, 155, 161, 165, 175, 181, 186, 238, 242, 249, 254, 265, 269, 277, 283, 352, 355, 361, 365, 375, 381, 386, 401, 406, 415, 422, 428, 522, 526, 533, 538, 549, 553, 561, 567, 584, 590, 595, 606
Offset: 0
For n = 11 the three views of the shell model of partitions with 11 regions look like this:
.
. A182181(11) = 35 A210692(11) = 29
.
. 1 1
. 1 1
. 1 1
. 1 1
. 1 1 1 1
. 1 1 1 1
. 1 1 1 1 1 1
. 2 1 1 1 1 2
. 2 1 1 1 1 1 1 2
. 3 2 2 2 1 1 1 1 2 2 3
. 6 3 4 2 5 3 4 2 3 2 1 1 2 3 4 5 6
. <------- Regions ------ ------------> N
. L
. a 1
. r * 2
. g * * 3
. e * 2
. s * * * 4
. t * * 3
. * * * * 5
. p * 2
. a * * * 4
. r * * 3
. t * * * * * 6
. s
.
. A182727(11) = 35
.
The areas of the shadows of the three views are A182181(11) = 35, A182727(11) = 35 and A210692(11) = 29, therefore the total area of the three shadows is 35+35+29 = 99, so a(11) = 99.
Since n = 11 is a partition number A000041 we can see that the rotated structure with 11 regions shows each row as a partition of 6 because A000041(6) = 11. See below:
.
. 6
. 3 3
. 4 2
. 2 2 2
. 5 1
. 3 2 1
. 4 1 1
. 2 2 1 1
. 3 1 1 1
. 2 1 1 1 1
. 1 1 1 1 1 1
.
Cf.
A000041,
A026905,
A135010,
A138121,
A141285,
A182703,
A194446,
A182181,
A182727,
A186114,
A206437,
A210692.
A278355
a(n) = sum of the perimeters of the Ferrers boards of the partitions of n. Also, sum of the perimeters of the diagrams of the regions of the set of partitions of n.
Original entry on oeis.org
0, 4, 12, 24, 48, 80, 140, 216, 344, 512, 768, 1100, 1596, 2224, 3120, 4272, 5852, 7860, 10576, 13992, 18520, 24208, 31596, 40824, 52696, 67404, 86088, 109176, 138180, 173812, 218252, 272540, 339708, 421464, 521848, 643504, 792056, 971248, 1188804, 1450348, 1766184, 2144416, 2599164, 3141748, 3791248, 4563780
Offset: 0
For n = 5 consider the partitions of 5 in colexicographic order (as shown in the 5th row of the triangle A211992) and its associated diagram of regions as shown below:
. Regions Minimalist
. Partitions of 5 diagram version
. _ _ _ _ _
. 1, 1, 1, 1, 1 |_| | | | | _| | | | |
. 2, 1, 1, 1 |_ _| | | | _ _| | | |
. 3, 1, 1 |_ _ _| | | _ _ _| | |
. 2, 2, 1 |_ _| | | _ _| | |
. 4, 1 |_ _ _ _| | _ _ _ _| |
. 3, 2 |_ _ _| | _ _| |
. 5 |_ _ _ _ _| _ _ _ _ _|
.
Then consider the following table which contains the Ferrers boards of the partitions of 5 and the diagram of every region of the set of partitions of 5:
-------------------------------------------------------------------------
| Partitions | | | Regions | | |
| of 5 | Ferrers | Peri- | of 5 | Region | Peri- |
|(See A211992)| board | meter |(see A220482)| diagram | meter |
-------------------------------------------------------------------------
| _ | _ |
| 1 |_| | 1 |_| 4 |
| 1 |_| | _ |
| 1 |_| | 1 _|_| |
| 1 |_| | 2 |_|_| 8 |
| 1 |_| 12 | _ |
| _ _ | 1 |_| |
| 2 |_|_| | 1 _ _|_| |
| 1 |_| | 3 |_|_|_| 12 |
| 1 |_| | _ _ |
| 1 |_| 12 | 2 |_|_| 6 |
| _ _ _ | _ |
| 3 |_|_|_| | 1 |_| |
| 1 |_| | 1 |_| |
| 1 |_| 12 | 1 _|_| |
| _ _ | 2 _ _|_|_| |
| 2 |_|_| | 4 |_|_|_|_| 18 |
| 2 |_|_| | _ _ _ |
| 1 |_| 10 | 3 |_|_|_| 8 |
| _ _ _ _ | _ |
| 4 |_|_|_|_| | 1 |_| |
| 1 |_| 12 | 1 |_| |
| _ _ _ | 1 |_| |
| 3 |_|_|_| | 1 |_| |
| 2 |_|_| 10 | 1 _|_| |
| _ _ _ _ _ | 2 _ _ _|_|_| |
| 6 |_|_|_|_|_| 12 | 5 |_|_|_|_|_| 24 |
| | |
-------------------------------------------------------------------------
| Sum of perimeters: 80 <-- equals --> 80 |
-------------------------------------------------------------------------
The sum of the perimeters of the Ferrers boards is 12 + 12 + 12 + 10 + 12 + 10 + 12 = 80, so a(5) = 80.
On the other hand, the sum of the perimeters of the diagrams of regions is 4 + 8 + 12 + 6 + 18 + 8 + 24 = 80, equaling the sum of the perimeters of the Ferrers boards.
.
Illustration of first six polygons of an infinite diagram constructed with the boundary segments of the minimalist diagram of regions and its mirror (note that the diagram looks like reflections on a mountain lake):
11............................................................
. /\
. / \
. / \
7................................... / \
. /\ / \
5..................... / \ /\/ \
. /\ / \ /\ / \
3........... / \ / \ / \/ \
2....... /\ / \ /\/ \ / \
1... /\ / \ /\/ \ / \ /\/ \
0 /\/ \/ \/ \/ \/ \
. \/\ /\ /\ /\ /\ /
. \/ \ / \/\ / \ / \/\ /
. \/ \ / \/\ / \ /
. \ / \ / \ /\ /
. \/ \ / \/ \ /
. \ / \/\ /
. \/ \ /
. \ /
. \ /
. \ /
. \/
n:
. 0 1 2 3 4 5 6
Perimeter of the n-th polygon:
. 0 4 8 12 24 32 60
a(n) is the sum of the perimeters of the first n polygons:
. 0 4 12 24 48 80 140
.
For n = 5, the sum of the perimeters of the first five polygons is 4 + 8 + 12 + 24 + 32 = 80, so a(5) = 80.
For n = 6, the sum of the perimeters of the first six polygons is 4 + 8 + 12 + 24 + 32 + 60 = 140, so a(6) = 140.
For another version of the above diagram see A228109.
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A194446,
A211992,
A220482,
A225600,
A211978,
A233968,
A244968.
A299474
a(n) = 4*p(n), where p(n) is the number of partitions of n.
Original entry on oeis.org
4, 4, 8, 12, 20, 28, 44, 60, 88, 120, 168, 224, 308, 404, 540, 704, 924, 1188, 1540, 1960, 2508, 3168, 4008, 5020, 6300, 7832, 9744, 12040, 14872, 18260, 22416, 27368, 33396, 40572, 49240, 59532, 71908, 86548, 104060, 124740, 149352, 178332, 212696, 253044, 300700, 356536, 422232, 499016, 589092, 694100, 816904
Offset: 0
Construction of a modular table of partitions in which a(n) is the number of edges of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........: 1 2 3 4 5 6 (stage)
a(n)......: 4 8 12 20 28 44 (edges)
A299475(n): 4 7 10 16 22 34 (vertices)
A000041(n): 1 2 3 5 7 11 (regions)
--------------------------------------------------------------------------------
r p(n)
--------------------------------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 .... 1 ....|_| |_| | |_| | | |_| | | | |_| | | | | |_| | | | | |
2 .... 2 .........|_ _| |_ _| | |_ _| | | |_ _| | | | |_ _| | | | |
3 .... 3 ................|_ _ _| |_ _ _| | |_ _ _| | | |_ _ _| | | |
4 |_ _| | |_ _| | | |_ _| | | |
5 .... 5 .........................|_ _ _ _| |_ _ _ _| | |_ _ _ _| | |
6 |_ _ _| | |_ _ _| | |
7 .... 7 ....................................|_ _ _ _ _| |_ _ _ _ _| |
8 |_ _| | |
9 |_ _ _ _| |
10 |_ _ _| |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
Cf.
A135010,
A141285,
A182181,
A186114,
A193870,
A194446,
A194447,
A206437,
A207779,
A220482,
A220517,
A273140,
A278355,
A278602,
A299475.
-
List([0..50],n->4*NrPartitions(n)); # Muniru A Asiru, Jul 10 2018
-
with(combinat): seq(4*numbpart(n),n=0..50); # Muniru A Asiru, Jul 10 2018
-
4*PartitionsP[Range[0,50]] (* Harvey P. Dale, Dec 05 2023 *)
-
a(n) = 4*numbpart(n); \\ Michel Marcus, Jul 15 2018
-
from sympy.ntheory import npartitions
def a(n): return 4*npartitions(n)
print([a(n) for n in range(51)]) # Michael S. Branicky, Apr 04 2021
Comments