cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A005703 Number of n-node connected graphs with at most one cycle.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 44, 112, 287, 763, 2041, 5577, 15300, 42419, 118122, 330785, 929469, 2621272, 7411706, 21010378, 59682057, 169859257, 484234165, 1382567947, 3952860475, 11315775161, 32430737380, 93044797486, 267211342954, 768096496093, 2209772802169
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of pseudotrees on n nodes. - Eric W. Weisstein, Jun 11 2012
Also unlabeled connected graphs covering n vertices with at most n edges. For this definition we have a(1) = 0 and possibly a(0) = 0. - Gus Wiseman, Feb 20 2024

Examples

			From _Gus Wiseman_, Feb 20 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 8 graphs:
  {}  .  {12}  {12,13}     {12,13,14}     {12,13,14,15}
               {12,13,23}  {12,13,24}     {12,13,14,25}
                           {12,13,14,23}  {12,13,24,35}
                           {12,13,24,34}  {12,13,14,15,23}
                                          {12,13,14,23,25}
                                          {12,13,14,23,45}
                                          {12,13,14,25,35}
                                          {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000055, A000081, A001429 (labeled A057500), A134964 (number of pseudoforests, labeled A133686).
The labeled version is A129271.
The connected complement is A140636, labeled A140638.
Non-connected: A368834 (labeled A367869) or A370316 (labeled A369191).
A001187 counts connected graphs, unlabeled A001349.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A062734 counts connected graphs by number of edges.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}];
    a[0] = 0;
    b = Drop[Flatten[
        sol = SolveAlways[
          0 == Series[
            t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
          x]; Table[a[n], {n, 0, nn}] /. sol], 1];
    r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c =
    Drop[Table[
        CoefficientList[
         Series[CycleIndex[DihedralGroup[n], s] /.
           Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3,
         nn}] // Total, 1];
    d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; CoefficientList[
    Series[r[x] - (r[x]^2 - r[x^2])/2 + d[x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 17 2014 *)
  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + g(1) + (g(2) - g(1)^2)/2 + sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2)}; \\ Andrew Howroyd and Washington Bomfim, May 15 2021

Formula

a(n) = A000055(n) + A001429(n).

Extensions

More terms from Vladeta Jovovic, Apr 19 2000 and from Michael Somos, Apr 26 2000
a(27) corrected and a(28) and a(29) computed by Washington Bomfim, May 14 2008

A140638 Number of connected graphs on n labeled nodes that contain at least two cycles.

Original entry on oeis.org

0, 0, 0, 7, 381, 21748, 1781154, 249849880, 66257728763, 34495508486976, 35641629989151608, 73354595357480683904, 301272202621204113362497, 2471648811029413368450098688, 40527680937730440155535277704046, 1328578958335783199341353852258282496
Offset: 1

Views

Author

Washington Bomfim, May 21 2008

Keywords

Comments

These are the connected graphs that are neither trees nor unicyclic.
Also connected non-choosable graphs covering n vertices, where a graph is choosable iff it is possible to choose a different vertex from each edge. The unlabeled version is A140636. The complement is counted by A129271. - Gus Wiseman, Feb 20 2024

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Dover, 2002, p. 2.

Crossrefs

The unlabeled version is A140636.
Cf. A000272 (trees), A001187 (connected graphs), A057500 (connected unicyclic graphs).
The complement is counted by A129271, unlabeled A005703.
The non-connected complement is A133686, covering A367869.
The non-connected version is A367867, unlabeled A140637.
The non-connected covering version is A367868.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,5}] (* Gus Wiseman, Feb 19 2024 *)
  • PARI
    seq(n)={my(A=O(x*x^n), t=-lambertw(-x + A)); Vec(serlaplace( log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, A)) - log(1/(1-t))/2 - t/2 + 3*t^2/4), -n)} \\ Andrew Howroyd, Jan 15 2022

Formula

a(n) = A001187(n) - A129271(n).
a(n) = A001187(n) - A000272(n) - A057500(n).

Extensions

Definition clarified by Andrew Howroyd, Jan 15 2022

A369197 Number of labeled connected loop-graphs with n vertices, none isolated, and at most n edges.

Original entry on oeis.org

1, 1, 3, 13, 95, 972, 12732, 202751, 3795864, 81609030, 1980107840, 53497226337, 1592294308992, 51758060711792, 1824081614046720, 69272000503031475, 2819906639193992192, 122488526636380368714, 5654657850859704139776, 276462849597009068108405, 14270030377126199463936000
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 13 loop-graphs (loops shown as singletons):
  .  {{1}}  {{1,2}}      {{1,2},{1,3}}
            {{1},{1,2}}  {{1,2},{2,3}}
            {{2},{1,2}}  {{1,3},{2,3}}
                         {{1},{1,2},{1,3}}
                         {{1},{1,2},{2,3}}
                         {{1},{1,3},{2,3}}
                         {{2},{1,2},{1,3}}
                         {{2},{1,2},{2,3}}
                         {{2},{1,3},{2,3}}
                         {{3},{1,2},{1,3}}
                         {{3},{1,2},{2,3}}
                         {{3},{1,3},{2,3}}
                         {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A000272.
Connected case of A066383 and A369196, loopless A369192 and A369193.
The loopless case is A129271, connected case of A369191.
The case of equality is A368951, connected case of A368597.
This is the connected case of A369194.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts (simple) graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A062740 counts connected loop-graphs.
A322661 counts covering loop-graphs, unlabeled A322700.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(log(1/(1-t))/2 + 3*t/2 - 3*t^2/4 + 1 - x))} \\ Andrew Howroyd, Feb 02 2024

Formula

Logarithmic transform of A368927.
From Andrew Howroyd, Feb 02 2024: (Start)
a(n) = A000169(n) + A129271(n).
E.g.f.: log(1/(1-T(x)))/2 + 3*T(x)/2 - 3*T(x)^2/4 + 1 - x, where T(x) is the e.g.f. of A000169. (End)

Extensions

a(0) changed to 1 and a(7) onwards from Andrew Howroyd, Feb 02 2024

A321194 Regular triangle where T(n,k) is the number of non-isomorphic multiset partitions of weight n with k connected components.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 17, 12, 3, 1, 40, 35, 12, 3, 1, 125, 112, 45, 12, 3, 1, 354, 347, 148, 45, 12, 3, 1, 1159, 1122, 512, 163, 45, 12, 3, 1, 3774, 3651, 1724, 572, 163, 45, 12, 3, 1, 13113, 12320, 5937, 2020, 593, 163, 45, 12, 3, 1, 46426, 42407, 20492, 7117, 2110, 593, 163, 45, 12, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2018

Keywords

Examples

			Triangle begins:
      1
      3     1
      6     3     1
     17    12     3     1
     40    35    12     3     1
    125   112    45    12     3     1
    354   347   148    45    12     3     1
   1159  1122   512   163    45    12     3     1
   3774  3651  1724   572   163    45    12     3     1
  13113 12320  5937  2020   593   163    45    12     3     1
The fourth row counts the following non-isomorphic multiset partitions.
  {{1,1,1,1}}        {{1,1},{2,2}}      {{1},{2},{3,3}}    {{1},{2},{3},{4}}
  {{1,1,2,2}}        {{1},{2,2,2}}      {{1},{2},{3,4}}
  {{1,2,2,2}}        {{1},{2,3,3}}      {{1},{2},{3},{3}}
  {{1,2,3,3}}        {{1,2},{3,3}}
  {{1,2,3,4}}        {{1},{2,3,4}}
  {{1},{1,1,1}}      {{1,2},{3,4}}
  {{1,1},{1,1}}      {{1},{1},{2,2}}
  {{1},{1,2,2}}      {{1},{1},{2,3}}
  {{1,2},{1,2}}      {{1},{2},{2,2}}
  {{1,2},{2,2}}      {{1},{3},{2,3}}
  {{1,3},{2,3}}      {{1},{1},{2},{2}}
  {{2},{1,2,2}}      {{1},{2},{2},{2}}
  {{3},{1,2,3}}
  {{1},{1},{1,1}}
  {{1},{2},{1,2}}
  {{2},{2},{1,2}}
  {{1},{1},{1},{1}}
		

Crossrefs

First column is A007718. Row sums are A007716.

Formula

O.g.f.: Product 1/(1 - t*x^n)^A007718(n).

Extensions

Terms a(56) and beyond from Andrew Howroyd, Jan 11 2024

A369191 Number of labeled simple graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5686, 102084, 2162168, 52693975, 1450876804, 44509105965, 1504709144203, 55563209785167, 2224667253972242, 95984473918245388, 4439157388017620554, 219067678811211857307, 11489425098298623161164, 638159082104453330569185
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A054548.

Examples

			The a(0) = 1 through a(3) = 4 graphs:
  {}  .  {{1,2}}  {{1,2},{1,3}}
                  {{1,2},{2,3}}
                  {{1,3},{2,3}}
                  {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A053530.
The connected case is A129271, unlabeled version A005703.
The case of equality is A367863, covering case of A367862.
This is the covering case of A369192, or A369193 for covered vertices.
The version for loop-graphs is A369194.
The unlabeled version is A370316.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A057500 counts connected graphs with n vertices and n edges.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369193.

A369192 Number of labeled simple graphs with n vertices and at most n edges (not necessarily covering).

Original entry on oeis.org

1, 1, 2, 8, 57, 638, 9949, 198440, 4791323, 135142796, 4346814276, 156713948672, 6251579884084, 273172369790743, 12969420360339724, 664551587744173992, 36543412829258260135, 2146170890448154922648, 134053014635659737513358, 8872652968135849629240560
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 1 through a(3) = 8 graphs:
  {}  {}  {}       {}
          {{1,2}}  {{1,2}}
                   {{1,3}}
                   {{2,3}}
                   {{1,2},{1,3}}
                   {{1,2},{2,3}}
                   {{1,3},{2,3}}
                   {{1,2},{1,3},{2,3}}
		

Crossrefs

The version for loop-graphs is A066383, covering A369194.
The case of equality is A116508, covering A367863, also A367862.
The connected case is A129271, unlabeled A005703.
The covering case is A369191, minimal case A053530.
Counting only covered vertices gives A369193.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]],{n,0,5}]
  • Python
    from math import comb
    def A369192(n): return sum(comb(comb(n,2),k) for k in range(n+1)) # Chai Wah Wu, Jul 14 2024

Formula

a(n) = Sum_{k=0..n} binomial(binomial(n,2),k).

A369193 Number of labeled simple graphs with n vertices and at most as many edges as covered (non-isolated) vertices.

Original entry on oeis.org

1, 1, 2, 8, 57, 608, 8614, 151365, 3162353, 76359554, 2088663444, 63760182536, 2147325661180, 79051734050283, 3157246719905273, 135938652662043977, 6275929675565965599, 309242148569525451140, 16197470691388774460758, 898619766673014862321176, 52639402023471657682257626
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 1 through a(3) = 8 graphs:
  {}  {}  {}       {}
          {{1,2}}  {{1,2}}
                   {{1,3}}
                   {{2,3}}
                   {{1,2},{1,3}}
                   {{1,2},{2,3}}
                   {{1,3},{2,3}}
                   {{1,2},{1,3},{2,3}}
		

Crossrefs

The case of equality is A367862, covering case of A116508, also A367863.
The covering case is A369191, for loop-graphs A369194.
The version counting all vertices is A369192.
The version for loop-graphs is A369196, counting all vertices A066383.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=Length[Union@@#]&]],{n,0,5}]

Formula

Binomial transform of A369191.

A317674 Regular triangle where T(n,k) is the number of antichains covering n vertices with k connected components.

Original entry on oeis.org

1, 1, 1, 5, 3, 1, 84, 23, 6, 1, 6348, 470, 65, 10, 1, 7743728, 39598, 1575, 145, 15, 1, 2414572893530, 54354104, 144403, 4095, 280, 21, 1, 56130437190053299918162, 19316801997024, 218033088, 402073, 9100, 490, 28, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        1       1
        5       3       1
       84      23       6       1
     6348     470      65      10       1
  7743728   39598    1575     145      15       1
		

Crossrefs

Programs

  • Mathematica
    blg={1,1,5,84,6348,7743728,2414572893530,56130437190053299918162} (*A048143*);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Product[blg[[Length[s]]],{s,spn}],{spn,Select[sps[Range[n]],Length[#]==k&]}],{n,Length[blg]},{k,n}]

A125207 Total number of connected components in all subgraphs obtained from the complete labeled graph K_n by removing zero or more edges.

Original entry on oeis.org

1, 3, 13, 98, 1398, 39956, 2354240, 286394544, 71225744048, 35884971729760, 36419817759267072, 74221711070826087424, 303193538300703211111936, 2480118087478081928075065344, 40601989279034990139321984265216, 1329877330680067685563700135615633408
Offset: 1

Views

Author

Max Alekseyev, Nov 23 2006

Keywords

Comments

a(n)/A006125(n) is the expected number of connected components in a simple labeled graph on n vertices. - Geoffrey Critzer, May 09 2011

Examples

			For n=2, we have two graph on two vertices: complete and empty, the former has one connected component while the latter has two connected components. The total number of connected components is 3, which is a(2).
		

Crossrefs

Programs

  • Mathematica
    f[list_]:= Total[Table[i list[[i]],{i,1,Length[list]}]];
    a= Sum[2^Binomial[n,2] x^n/n!,{n,0,20}];
    Map[f, Transpose[Table[Rest[Range[0, 20]! CoefficientList[Series[Log[a]^k/k!, {x, 0, 20}],x]], {k, 1, 20}]]] (* Geoffrey Critzer, May 09 2011 *)
  • PARI
    G=sum(n=0,30,2^(n*(n-1)/2)*x^n/n!) + O(x^31); v=Vec(G*log(G)); for(i=1,length(v),v[i]*=i!); print(v)

Formula

E.g.f.: (F(x)-1)*exp(F(x)-1) = G(x)*log(G(x)) where G(x) = Sum_{n>=0} 2^(n(n-1)/2) * x^n/n! and F(x) = 1+log(G(x)) is the e.g.f. of A001187.
a(n) = Sum_{k=1..n} k * A143543(n,k). - Alois P. Heinz, Feb 02 2024

A330297 Number of labeled simple graphs covering n vertices with exactly two automorphisms, or with exactly n!/2 graphs obtainable by permuting the vertices.

Original entry on oeis.org

0, 0, 1, 3, 24, 540, 13320
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2019

Keywords

Comments

These are graphs with exactly one involution and no other symmetries.

Examples

			The a(4) = 24 graphs:
  {12,13,24}  {12,13,14,23}
  {12,13,34}  {12,13,14,24}
  {12,14,23}  {12,13,14,34}
  {12,14,34}  {12,13,23,24}
  {12,23,34}  {12,13,23,34}
  {12,24,34}  {12,14,23,24}
  {13,14,23}  {12,14,24,34}
  {13,14,24}  {12,23,24,34}
  {13,23,24}  {13,14,23,34}
  {13,24,34}  {13,14,24,34}
  {14,23,24}  {13,23,24,34}
  {14,23,34}  {14,23,24,34}
		

Crossrefs

The non-covering version is A330345.
The unlabeled version is A330346 (not A241454).
Covering simple graphs are A006129.
Covering graphs with exactly one automorphism are A330343.
Graphs with exactly two automorphisms are A330297 (labeled covering), A330344 (unlabeled), A330345 (labeled), and A330346 (unlabeled covering).

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[graprms[#]]==n!/2&]],{n,0,5}]

Formula

a(n) = n!/2 * A330346(n).
Previous Showing 11-20 of 30 results. Next