A363006
a(n) = 1/((d-1)*n + 1)*Sum_{i=0..n} binomial((d - 1)*n+1, n-i) * binomial((d-1)*n+i, i), with d = 6.
Original entry on oeis.org
1, 2, 22, 342, 6202, 122762, 2571326, 56031470, 1257199154, 28849835538, 673953255142, 15973925161030, 383186776643946, 9285457458463770, 226959074854361742, 5588974707042304222, 138529985051020001634, 3453373395317346136610, 86526667346028323084726, 2177844556015530807952438
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. See p. 145. (in Mandarin.)
-
With[{d = 6}, Table[(1/((d - 1) n + 1)) Sum[Binomial[(d - 1) n + 1, n - i] Binomial[(d - 1) n + i, i], {i, 0, n}], {n, 0, 12}] ]
-
a(n) = my(d=6); sum(i=0, n, binomial((d - 1)*n+1, n-i) * binomial((d-1)*n+i, i))/((d-1)*n + 1); \\ Michel Marcus, May 16 2023
A371675
G.f. satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 32, 324, 3696, 45316, 583152, 7769348, 106250144, 1482925956, 21037812352, 302478044996, 4397824031376, 64549296707460, 955150116019920, 14233474784850948, 213417133281087040, 3217460713030341892, 48741781832765496288, 741606216370357708612
Offset: 0
-
a(n, r=2, t=3, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A108424
Number of paths from (0,0) to (3n,0) that stay in the first quadrant, consist of steps u=(2,1), U=(1,2), or d=(1,-1) and do not touch the x-axis, except at the endpoints.
Original entry on oeis.org
2, 6, 34, 238, 1858, 15510, 135490, 1223134, 11320066, 106830502, 1024144482, 9945711566, 97634828354, 967298498358, 9659274283650, 97119829841854, 982391779220482, 9990160542904134, 102074758837531810, 1047391288012377774, 10788532748880319298
Offset: 1
a(2) = 6 because we have uudd, uUddd, Ududd, UdUddd, Uuddd and UUdddd.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
- M. von Bell and M. Yip, Schröder combinatorics and nu-associahedra, arXiv:2006.09804 [math.CO], 2020.
-
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A+z*A^2: Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..25);
a:=proc(n) if n=1 then 2 else (n*2^n*binomial(2*n,n)/((2*n-1)*(n+1)))*sum(binomial(n-1,j)^2/2^j/binomial(n+j+1,j),j=0..n-1) fi end: seq(a(n),n=1..19);
# Alternative:
a := n -> 2*binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1)/n:
seq(simplify(a(n)), n = 1..21); # Peter Luschny, Jun 14 2021
-
Table[(n*2^n*Binomial[2*n,n]/((2n-1)*(n+1))) * Sum[(Binomial[n-1,j])^2/ (2^j * Binomial[n+j+1,j]), {j,0,n-1}], {n,1,20}] (* Vaclav Kotesovec, Oct 17 2012 *)
A336534
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(k*n+j+1,n)/(k*n+j+1).
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 1, 2, 6, 2, 1, 2, 10, 22, 2, 1, 2, 14, 66, 90, 2, 1, 2, 18, 134, 498, 394, 2, 1, 2, 22, 226, 1482, 4066, 1806, 2, 1, 2, 26, 342, 3298, 17818, 34970, 8558, 2, 1, 2, 30, 482, 6202, 52450, 226214, 312066, 41586, 2, 1, 2, 34, 646, 10450, 122762, 881970, 2984206, 2862562, 206098, 2
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
2, 6, 10, 14, 18, 22, ...
2, 22, 66, 134, 226, 342, ...
2, 90, 498, 1482, 3298, 6202, ...
2, 394, 4066, 17818, 52450, 122762, ...
If Michael D. Weiner's conjecture on
A260332 is correct, column 4 is
A260332 for n > 0.
-
T[n_, k_] := Sum[Binomial[n, j] * Binomial[k*n+j+1, n]/(k*n+j+1), {j, 0, n}]; Table[T[k, n-k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
-
T(n, k) = sum(j=0, n, binomial(k*n+1, j)*binomial((k+1)*n-j, n-j))/(k*n+1);
A378238
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+r+k,n)/(3*n+r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 14, 0, 1, 6, 32, 134, 0, 1, 8, 54, 324, 1482, 0, 1, 10, 80, 578, 3696, 17818, 0, 1, 12, 110, 904, 6810, 45316, 226214, 0, 1, 14, 144, 1310, 11008, 85278, 583152, 2984206, 0, 1, 16, 182, 1804, 16490, 140936, 1113854, 7769348, 40503890, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 14, 32, 54, 80, 110, 144, ...
0, 134, 324, 578, 904, 1310, 1804, ...
0, 1482, 3696, 6810, 11008, 16490, 23472, ...
0, 17818, 45316, 85278, 140936, 216002, 314700, ...
0, 226214, 583152, 1113854, 1870352, 2914790, 4320608, ...
T(n,n) gives 1/4 *
A370102(n) for n > 0.
-
T(n, k, t=3, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A364167
Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3).
Original entry on oeis.org
1, 2, 18, 234, 3570, 59586, 1053570, 19392490, 367677090, 7131417282, 140834140722, 2822214963882, 57243994984722, 1172991472484610, 24245748916730658, 504935751379031082, 10584721220759172162, 223163804001804187266, 4729176407109705542994, 100676187744957784842090
Offset: 0
-
a:= n-> sum(binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1), k=0..n):
seq(a(n), n=0..49); # Christian N. Hofmann, Jul 14 2023
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1));
A364396
G.f. satisfies A(x) = 1 + x/A(x)^2*(1 + 1/A(x)).
Original entry on oeis.org
1, 2, -10, 86, -902, 10506, -130594, 1697006, -22774094, 313205522, -4391039930, 62522730310, -901680559574, 13143551082138, -193339856081490, 2866341942620382, -42784807130635678, 642457682754511906, -9698259831536382826, 147091417979841002294
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n+k-2, n-1))/n);
A364825
G.f. satisfies A(x) = 1 - x*A(x)^3 * (1 - 3*A(x)).
Original entry on oeis.org
1, 2, 18, 222, 3166, 49098, 804138, 13686198, 239671590, 4290463698, 78160665666, 1444298971662, 27005948771886, 510024567278234, 9714561608833242, 186403770207998310, 3599812021110287862, 69914211761486437026, 1364692279095996581490
Offset: 0
-
A364825 := proc(n)
(-1)^n*add( (-3)^k*binomial(n,k) * binomial(3*n+k+1,n)/(3*n+k+1),k=0..n) ;
end proc:
seq(A364825(n),n=0..80); # R. J. Mathar, Aug 10 2023
-
a(n) = (-1)^n*sum(k=0, n, (-3)^k*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1));
A257995
Forests of binary shrubs on 3n vertices avoiding 321.
Original entry on oeis.org
1, 2, 37, 866, 23285, 679606, 20931998, 669688835, 22040134327, 741386199872, 25376258521393, 880977739374392, 30946637156662975, 1097929752363923490, 39284677690031136567, 1415992852373003788459
Offset: 0
- David Bevan, Table of n, a(n) for n = 0..993
- D Bevan, D Levin, P Nugent, J Pantone, L Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036, 2015
- M. Riehl, Forests of binary shrubs avoiding patterns of length 3
-
gf := RootOf(_Z^10*z^10+18*_Z^9*z^9+123*_Z^8*z^8+(-3*z^8+420*z^7+54*z^6)*_Z^7+(-36*z^7+751*z^6+486*z^5)*_Z^6+(-138*z^6+354*z^5+1053*z^4)*_Z^5+(3*z^6-228*z^5-213*z^4+162*z^3+729*z^2)*_Z^4+(18*z^5-215*z^4+2*z^3-360*z^2)*_Z^3+(15*z^4+24*z^3-71*z^2-54*z)*_Z^2+(-z^4+24*z^3-8*z^2+54*z-1)*_Z+4*z^2+4*z+1)^(1/2):
seq(coeff(series(gf,z,21),z,i),i=0..20);
-
b[k_]:=k(k+1)/2;n[k_]:=n[k]=Join[{b[k+1],b[k+1]-1},Table[b[i],{i,k,1,-1}],{1}];v[1]={1,0,1};v[k_]:=v[k]=Module[{s=MapIndexed[#1n[First@#2]&,v[k-1]]},Table[Total[If[i>Length@#,0,#[[i]]]&/@s],{i,Length@Last@s}]];a[k_]:=a[k]=Total@v[k];Array[a,20] (* David Bevan, Oct 27 2015 *)
A371700
G.f. satisfies A(x) = 1 + x * A(x)^6 * (1 + A(x)).
Original entry on oeis.org
1, 2, 26, 482, 10450, 247554, 6208970, 162064322, 4356511138, 119788611458, 3353361311738, 95251219926690, 2738421518770546, 79531905952256642, 2329955712706784682, 68770993359030211458, 2043143866891345880898, 61050342965542475675906
Offset: 0
-
a(n, r=1, t=6, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
Comments