cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A156128 a(n) = 6^n * Catalan(n).

Original entry on oeis.org

1, 6, 72, 1080, 18144, 326592, 6158592, 120092544, 2401850880, 48997757952, 1015589892096, 21327387734016, 452796847276032, 9702789584486400, 209580255024906240, 4558370546791710720, 99747873141559787520, 2194453209114315325440, 48508965675158549299200
Offset: 0

Views

Author

Philippe Deléham, Feb 04 2009

Keywords

Comments

Number of Dyck n-paths with two types of up step and three types of down step. - David Scambler, Jun 21 2013

Crossrefs

Programs

  • Magma
    [6^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Maple
    A156128_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 6*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A156128_list(16); # Peter Luschny, May 19 2011
  • Mathematica
    Table[CatalanNumber[n]6^n, {n, 0, 16}] (* Alonso del Arte, Jul 19 2011 *)

Formula

a(n) = 6^n * A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
6, 6, 0, 0, 0, 0, ...
6, 6, 6, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
6, 6, 6, 6, 6, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 24*x). - Peter Luschny, Aug 26 2012
G.f.: c(6*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum{k=0..n} A085880(n,k) * 5^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 6*x/(1 - 6*x/(1 - 6*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 588/529 + 864*arctan(1/sqrt(23)) / (529*sqrt(23)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 564/625 - 432*log(3/2) / 3125. - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +12*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A156266 a(n) = 7^n*Catalan(n).

Original entry on oeis.org

1, 7, 98, 1715, 33614, 705894, 15529668, 353299947, 8243665430, 196199237234, 4744454282204, 116239129913998, 2879153833254412, 71978845831360300, 1813866914950279560, 46026872966863343835, 1175038992212864189670
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Crossrefs

Programs

  • Magma
    [7^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Maple
    A156266_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 7*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A156266_list(16); # Peter Luschny, May 19 2011
  • Mathematica
    Table[7^n * CatalanNumber[n], {n, 0, 16}] (* Amiram Eldar, Jan 25 2022 *)

Formula

a(n) = 7^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
7, 7, 0, 0, 0, 0, ...
7, 7, 7, 0, 0, 0, ...
7, 7, 7, 7, 0, 0, ...
7, 7, 7, 7, 7, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 28*x). - Peter Luschny, Aug 26 2012
G.f.: c(7*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*6^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 7*x/(1 - 7*x/(1 - 7*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 266/243 + 392*arctan(1/(3*sqrt(3))) / (729*sqrt(3)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 770/841 - 1176*arctanh(1/sqrt(29)) / (841*sqrt(29)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +14*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

Extensions

a(15) corrected by Vincenzo Librandi, Jul 19 2011

A156270 a(n) = 8^n*Catalan(n).

Original entry on oeis.org

1, 8, 128, 2560, 57344, 1376256, 34603008, 899678208, 23991418880, 652566593536, 18034567675904, 504967894925312, 14294475794808832, 408413594137395200, 11762311511156981760, 341107033823552471040, 9952299339793060331520
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

A quarter of the count of And/Or-Trees with 2 variables [Chauvin]. - R. J. Mathar, Apr 01 2012

Crossrefs

Programs

Formula

a(n) = 8^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
8, 8, 0, 0, 0, 0, ...
8, 8, 8, 0, 0, 0, ...
8, 8, 8, 8, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 32*x). - Peter Luschny, Aug 26 2012
G.f.: c(8*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*7^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 8*x/(1 - 8*x/(1 - 8*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Apr 14 2018
Sum_{n>=0} 1/a(n) = 1040/961 + 1536*arctan(1/sqrt(31)) / (961*sqrt(31)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 112/121 - 512*arctanh(1/sqrt(33)) / (363*sqrt(33)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence +(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A369102 Expansion of (1/x) * Series_Reversion( x * ((1-x)^4-x^4) ).

Original entry on oeis.org

1, 4, 26, 204, 1772, 16408, 158752, 1585968, 16235472, 169423232, 1795611168, 19275231872, 209140483328, 2289981517312, 25271472702464, 280795784911616, 3138701648319744, 35270318924758016, 398215386792574464, 4515067063939210240, 51388662166213954560
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^4-x^4))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(5*n+3, n-4*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(5*n+3,n-4*k).

A138020 G.f. satisfies A(x) = sqrt( (1 + 2*x*A(x)) / (1 - 2*x*A(x)) ).

Original entry on oeis.org

1, 2, 6, 24, 110, 544, 2828, 15232, 84246, 475648, 2730068, 15882240, 93438540, 554967040, 3323125528, 20039827456, 121597985254, 741871845376, 4548193111428, 28004975116288, 173113004348580, 1073893324357632, 6683288759506856, 41715337804120064
Offset: 0

Views

Author

Paul D. Hanna, Feb 28 2008

Keywords

Crossrefs

Programs

  • Maple
    A138020 := proc(n)
        option remember ;
        if n < 5 then
            op(n+1,[1,2,6,24,110]) ;
        else
            4*(-55*n^3 +231*n^2 -263*n +51)*procname(n-2) -16*(n-3)*(n-4)*(5*n-1)*procname(n-4) ;
            -%/n/(n+1)/(5*n-11)
        end if;
    end proc:
    seq(A138020(n),n=0..30) ; # R. J. Mathar, Sep 27 2024
  • Mathematica
    CoefficientList[y/.AsymptoticSolve[y^2-1-2x(y+y^3) ==0,y->1,{x,0,23}][[1]],x] (* Alexander Burstein, Nov 26 2021 *)
  • PARI
    a(n)=polcoeff((1/x)*serreverse(x*sqrt((1-2*x)/(1+2*x+x^2*O(x^n)))),n)

Formula

a(n) ~ 2^(n - 1/2) * phi^((5*n + 3)/2) / (sqrt(Pi) * 5^(1/4) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 04 2020
From Alexander Burstein, Nov 26 2021: (Start)
G.f.: A(x) = 1 + 2*x*A(x)*(1 + A(x)^2)/(1 + A(x)).
G.f.: A(-x*A(x)^2) = 1/A(x). (End)
D-finite with recurrence +n*(n+1)*(5*n-11) *a(n) +4*(-55*n^3 +231*n^2 -263*n +51)*a(n-2) -16*(n-3)*(n-4)*(5*n-1)*a(n-4)=0. - R. J. Mathar, Mar 25 2024
From Seiichi Manyama, Dec 22 2024: (Start)
a(n) = (2^n/(n+1)) * Sum_{k=0..n} binomial(n/2+k-1/2,k) * binomial(n/2+1/2,n-k).
a(n) = 2^n * Sum_{k=0..n} binomial(n,k) * binomial(n/2+k+1/2,n)/(n+2*k+1). (End)

A156273 a(n) = 9^n*Catalan(n).

Original entry on oeis.org

1, 9, 162, 3645, 91854, 2480058, 70150212, 2051893701, 61556811030, 1883638417518, 58564030799196, 1844766970174674, 58748732742485772, 1888352123865614100, 61182608813245896840, 1996082612532147384405, 65518476340761072970470, 2162109719245115408025510
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Crossrefs

Programs

  • Magma
    [9^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[9^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Sep 09 2012 *)

Formula

a(n) = 9^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
9, 9, 0, 0, 0, 0, ...
9, 9, 9, 0, 0, 0, ...
9, 9, 9, 9, 0, 0, ...
9, 9, 9, 9, 9, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 36*x). - Peter Luschny, Aug 26 2012
G.f.: c(9*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum{k=0..n} A085880(n,k)*8^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 9*x/(1 - 9*x/(1 - 9*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 1314/1225 + 1944*arctan(1/sqrt(35)) / (1225*sqrt(35)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1278/1369 - 1944*arctanh(1/sqrt(37)) / (1369*sqrt(37)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +18*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A354733 a(0) = a(1) = 1; a(n) = 2 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 2, 4, 10, 24, 64, 168, 464, 1280, 3624, 10304, 29728, 86240, 252480, 743040, 2200640, 6547200, 19571200, 58727680, 176883200, 534476800, 1619912320, 4923070464, 14999764480, 45807916544, 140196076544, 429931051008, 1320905583616, 4065358827520
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 2 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 29}]
    nmax = 29; CoefficientList[Series[(1 - Sqrt[1 - 8 x^2 (1 + x)])/(4 x^2), {x, 0, nmax}], x]
  • PARI
    a(n) = sum(k=0, n\2, 2^k*binomial(k+1, n-2*k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Nov 05 2023

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 2 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 8 * x^2 * (1 + x))) / (4 * x^2).
a(n) ~ 5^(1/4) * (1 + sqrt(5))^(n+2) / (8 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 04 2022
a(n) = Sum_{k=0..floor(n/2)} 2^k * binomial(k+1,n-2*k) * A000108(k). - Seiichi Manyama, Nov 05 2023

A200375 Product of Catalan and Jacobsthal numbers: a(n) = A000108(n)*A001045(n+1).

Original entry on oeis.org

1, 1, 6, 25, 154, 882, 5676, 36465, 244530, 1657942, 11471668, 80242890, 568080772, 4056976900, 29212908120, 211783889025, 1544811959970, 11328491394990, 83473572128100, 617702666484750, 4588654943721420, 34206312386929020, 255803818897858920, 1918528298674328250, 14427334095935095764
Offset: 0

Views

Author

Paul D. Hanna, Nov 16 2011

Keywords

Comments

More generally, given {S} such that: S(n) = b*S(n-1) + c*S(n-2), |b|>0, |c|>0, then Sum_{n>=0} S(n)*Catalan(n)*x^n = sqrt( (1-2*b*x - sqrt(1-4*b*x-16*c*x^2))/(2*b^2+8*c) )/x.

Examples

			G.f.: A(x) = 1 + x + 2*3*x^2 + 5*5*x^3 + 14*11*x^4 + 42*21*x^5 + 132*43*x^6 + 429*85*x^7 + 1430*171*x^8 +...+ A000108(n)*A001045(n)*x^n +...
The g.f. of the Jacobsthal sequence A001045, F(x) = 1/(1-x-2*x^2), begins:
F(x) = 1 + x + 3*x^2 + 5*x^3 + 11*x^4 + 21*x^5 + 43*x^6 + 85*x^7 + 171*x^8 +...
The g.f. of A200376, where G(x) =  A(x/G(x)), begins:
G(x) = 1 + x + 5*x^2 + 9*x^3 + 37*x^4 + 81*x^5 + 301*x^6 + 729*x^7 +...
in which the odd-indexed coefficients are powers of 9.
		

Crossrefs

Programs

  • Mathematica
    Array[CatalanNumber[# - 1] (2^# - (-1)^#)/3 &, 25] (* Michael De Vlieger, Apr 24 2018 *)
  • PARI
    {a(n) = binomial(2*n, n)/(n+1) * (2^(n+1) + (-1)^n)/3}
    
  • PARI
    {a(n) = polcoef(sqrt((1-2*x - sqrt(1-4*x-32*x^2 +O(x^(n+3))))/2)/(3*x), n)}
    
  • PARI
    {a(n) = polcoef((1/x)*serreverse(x-x^2 - 4*x^3*sum(m=0,n\2,binomial(2*m,m)/(m+1)*3^m*x^(2*m)) +x^3*O(x^n)), n)}

Formula

G.f.: sqrt( (1-2*x - sqrt(1-4*x-32*x^2))/2 )/(3*x).
G.f.: (1/x)*Series_Reversion(x-x^2 - 4*x^3*Sum_{n>=0} A000108(n)*3^n*x^(2*n) ).
G.f. satisfies: A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where G(x) is the g.f. of A200376: G(x) = 1/sqrt(1-10*x^2 + x^4/(1-8*x^2)) + x/(1-9*x^2).
n*(n+1)*a(n) -2*n*(2*n-1)*a(n-1) -8*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 17 2011
a(n) = binomial(2*n,n)/(n+1) * (2^(n+1) + (-1)^n)/3.
From Peter Bala, Aug 17 2021: (Start)
G.f.: A(x) = (sqrt(1 + 4*x) - sqrt(1 - 8*x))/(6*x).
A(x) = 1/sqrt(1 + 4*x)*c( 3*x/(1 + 4*x) ), where c(x) = (1 - sqrt(1- 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Cf. A151374.
In general, [x^n] ( 1/sqrt(1 + 4*x)*c( k*x/(1 + 4*x) ) ) = Catalan(n)*((k-1)^(n+1) + (-1)^(n+1))/k.
A(x) = 1/sqrt(1 - 8*x)*c( -3*x/(1 - 8*x) ). (End)
G.f. A(x) satisfies A(x) = sqrt( 1 + 2*x*A(x)^2 + 9*x^2*A(x)^4 ). - Paul D. Hanna, Dec 14 2024

Extensions

Typo in Name corrected by Peter Bala, Aug 17 2021

A337168 a(n) = (-1)^n + 2 * Sum_{k=0..n-1} a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, 5, 21, 105, 553, 3053, 17405, 101713, 606033, 3667797, 22485477, 139340985, 871429497, 5492959293, 34862161869, 222592918689, 1428814897825, 9215016141989, 59684122637237, 388045493943049, 2531696701375689, 16569559364596365, 108758426952823709
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2021

Keywords

Comments

Inverse binomial transform of A151374.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = (-1)^n + 2 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 23}]
    Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k CatalanNumber[k], {k, 0, n}], {n, 0, 23}]
    Table[(-1)^n Hypergeometric2F1[1/2, -n, 2, 8], {n, 0, 23}]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + 2*x*A(x)^2.
G.f.: (1 - sqrt(1 - 8*x / (1 + x))) / (4*x).
E.g.f.: exp(3*x) * (BesselI(0,4*x) - BesselI(1,4*x)).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 2^k * Catalan(k).
a(n) ~ 7^(n + 3/2) / (2^(9/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2021

A156275 a(n) = 10^n*Catalan(n).

Original entry on oeis.org

1, 10, 200, 5000, 140000, 4200000, 132000000, 4290000000, 143000000000, 4862000000000, 167960000000000, 5878600000000000, 208012000000000000, 7429000000000000000, 267444000000000000000, 9694845000000000000000, 353576700000000000000000
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

In general, for m >= 1, Sum_{k>=0} 1/(m^k * Catalan(k)) = 2*m*(8*m + 1) / (4*m - 1)^2 + 24 * m^2 * arcsin(1/(2*sqrt(m))) / (4*m - 1)^(5/2). - Vaclav Kotesovec, Nov 23 2021

Crossrefs

Programs

  • Magma
    [10^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[10^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 12 2013 *)

Formula

a(n) = 10^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
10, 10, 0, 0, 0, ...
10, 10, 10, 0, 0, ...
10, 10, 10, 10, 0, ...
10, 10, 10, 10, 10, ...
... (End)
E.g.f.: KummerM(1/2, 2, 40*x). - Peter Luschny, Aug 26 2012
G.f.: c(10*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*9^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 10*x/(1 - 10*x/(1 - 10*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 180/169 + 800*arctan(1/sqrt(39)) / (507*sqrt(39)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1580/1681 - 2400*arctanh(1/sqrt(41)) / (1681*sqrt(41)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +20*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

Extensions

a(15) corrected by Vincenzo Librandi, Jul 19 2011
Previous Showing 11-20 of 33 results. Next