cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A159673 Expansion of 56*x^2/(1 - 783*x + 783*x^2 - x^3).

Original entry on oeis.org

0, 56, 43848, 34289136, 26814060560, 20968561068840, 16397387941772376, 12822736401904929248, 10027363468901712899616, 7841385409944737582570520, 6131953363213315887857247080, 4795179688647403079566784646096, 3749824384568905994905337736000048
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 13*n(j) + 1 = a(j)*a(j) and 15*n(j) + 1 = b(j)*b(j) with positive integer numbers.

Crossrefs

Programs

  • Magma
    b:= func< n | Evaluate(ChebyshevSecond(n),391) >;
    [(14/195)*(-1 +b(n+1) -781*b(n)): n in [1..30]]; // G. C. Greubel, Sep 25 2022
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((15*a*a-2)/13): if (trunc(b)=b) then
    n:=(a*a-1)/13: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
    # Second program
    seq((14/195)*(simplify(ChebyshevU(n, 391) -781*ChebyshevU(n-1, 391)) -1), n=1..30); # G. C. Greubel, Sep 25 2022
  • Mathematica
    CoefficientList[Series[56 x/(- x^3 + 783 x^2 - 783 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
    LinearRecurrence[{783,-783,1},{0,56,43848},20] (* Harvey P. Dale, Jan 06 2019 *)
  • PARI
    Vec(56*x^2/(-x^3+783*x^2-783*x+1) + O(x^100)) \\ Colin Barker, Feb 24 2014
    
  • PARI
    a(n) = round(-((391+28*sqrt(195))^(-n)*(-1+(391+28*sqrt(195))^n)*(14+sqrt(195)+(-14+sqrt(195))*(391+28*sqrt(195))^n))/390) \\ Colin Barker, Jul 25 2016
    
  • SageMath
    def A159673(n): return (14/195)*(-1 + chebyshev_U(n, 391) - 781*chebyshev_U(n-1, 391))
    [A159673(n) for n in range(1,30)] # G. C. Greubel, Sep 25 2022

Formula

The a(j) recurrence is a(1)=1, a(2)=27, a(t+2) = 28*a(t+1) - a(t) resulting in terms 1, 27, 755, 21113, ... (A159668).
The b(j) recurrence is b(1)=1, b(2)=29, b(t+2) = 28*b(t+1) - b(t) resulting in terms 1, 29, 811, 22679, ... (A159669).
The n(j) recurrence is n(0) = n(1) = 0, n(2) = 56, n(t+3) = 783*(n(t+2) -n(t+1)) + n(t) resulting in terms 0, 0, 56, 43848, 34289136, ... (this sequence).
G.f.: 56*x^2/((1-x)*(1 - 782*x + x^2)). - Vincenzo Librandi, Feb 26 2014
a(n) = -((391+28*sqrt(195))^(-n)*(-1+(391+28*sqrt(195))^n)*(14+sqrt(195)+(-14+sqrt(195))*(391+28*sqrt(195))^n))/390. - Colin Barker, Jul 25 2016
a(n) = (14/195)*(-1 + ChebyshevU(n, 391) - 781*ChebyshevU(n-1, 391)). - G. C. Greubel, Sep 25 2022

Extensions

More terms and new name from Colin Barker, Feb 24 2014

A159675 Expansion of x*(1 + x)/(1 - 32*x + x^2).

Original entry on oeis.org

1, 33, 1055, 33727, 1078209, 34468961, 1101928543, 35227244415, 1126169892737, 36002209323169, 1150944528448671, 36794222701034303, 1176264181904649025, 37603659598247734497, 1202140842962022854879, 38430903315186483621631, 1228586765243005453037313
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 15*n(j) + 1 = a(j)*a(j) and 17*n(j) + 1 = b(j)*b(j) with positive integer numbers.

Crossrefs

Programs

  • Magma
    [n le 2 select (33)^(n-1) else 32*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 25 2022
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((17*a*a-2)/15): if (trunc(b)=b) then
    n:=(a*a-1)/15: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
  • Mathematica
    LinearRecurrence[{32,-1},{1,33},20] (* or *)
    CoefficientList[Series[(1+x)/(1-32 x+x^2),{x,0,20}], x] (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    Vec(x*(1+x)/(1-32*x+x^2) + O(x^20)) \\ Colin Barker, Feb 24 2014
    
  • PARI
    a(n) = round((16+sqrt(255))^(-n)*(-15-sqrt(255)+(-15+sqrt(255))*(16+sqrt(255))^(2*n))/30) \\ Colin Barker, Jul 25 2016
    
  • SageMath
    def A159675(n): return chebyshev_U(n-1, 16) + chebyshev_U(n-2, 16)
    [A159675(n) for n in range(1,30)] # G. C. Greubel, Sep 25 2022

Formula

The a(j) recurrence is a(1)=1; a(2)=31; a(t+2)=32*a(t+1)-a(t) resulting in terms 1, 31, 991, 31681... (A159674).
The b(j) recurrence is b(1)=1; b(2)=33; b(t+2)=32*b(t+1)-b(t) resulting in terms 1, 33, 1055, 33727... (this sequence).
The n(j) recurrence is n(0)=n(1)=0; n(2)=64; n(t+3)=1023*(n(t+2)-n(t+1))+n(t) resulting in terms 0, 0, 64, 65472, 66912384... (A159677).
G.f.: x*(1 + x)/(1 - 32*x + x^2). - Harvey P. Dale, Apr 22 2011
a(n) = (16+sqrt(255))^(-n)*(-15 - sqrt(255) + (-15 + sqrt(255))*(16 + sqrt(255))^(2*n))/30. - Colin Barker, Jul 25 2016
a(n) = ChebyshevU(n-1, 16) + ChebyshevU(n-2, 16). - G. C. Greubel, Sep 25 2022

Extensions

More terms from Harvey P. Dale, Apr 22 2011
New name from Colin Barker, Feb 24 2014

A159677 Expansion of 64*x^2/(1 - 1023*x + 1023*x^2 - x^3).

Original entry on oeis.org

0, 0, 64, 65472, 66912384, 68384391040, 69888780730560, 71426265522241344, 72997573474949923072, 74603448665133299138304, 76244651538192756769423680, 77921959268584332285051862720, 79636166127841649402566234276224, 81388083860694897105090406378438272
Offset: 0

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Comments

Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 15*n(j) + 1 = a(j)*a(j) and 17*n(j) + 1 = b(j)*b(j) with positive integer numbers.

Crossrefs

Programs

  • Magma
    I:=[0,0,64]; [n le 3 select I[n] else 1023*Self(n-1) - 1023*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 03 2018
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((17*a*a-2)/15): if (trunc(b)=b) then
    n:=(a*a-1)/15: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==0,a[2]==64,a[n]==1023(a[n-1]-a[n-2])+ a[n-3]}, a,{n,20}] (* Harvey P. Dale, Jan 01 2014 *)
    LinearRecurrence[{1023,-1023,1},{0,0,64},20] (* Harvey P. Dale, Jan 01 2014 *)
  • PARI
    concat([0, 0], Vec(64/(-x^3+1023*x^2-1023*x+1) + O(x^20))) \\ Colin Barker, Mar 04 2014
    
  • PARI
    a(n) = round(-((511+32*sqrt(255))^(-n)*(-1+(511+32*sqrt(255))^n)*(16+sqrt(255)+(-16+sqrt(255))*(511+32*sqrt(255))^n))/510) \\ Colin Barker, Jul 25 2016
    
  • SageMath
    def A159677(n): return (16/255)*(-1 +chebyshev_U(n, 511) -1021*chebyshev_U(n-1, 511))
    [A159677(n) for n in range(31)] # G. C. Greubel, Sep 25 2022

Formula

The a(j) recurrence is a(0)=1, a(1)=31, a(t+2) = 32*a(t+1) - a(t) resulting in terms 1, 31, 991, 31681, ... (A159674).
The b(j) recurrence is b(0)=1, b(1)=33, b(t+2) = 32*b(t+1) - b(t) resulting in terms 1, 33, 1055, 33727, ... (A159675).
The n(j) recurrence is n(-1) = n(0) = 0, n(1) = 64, n(t+3) = 1023*(n(t+2) -n(t+1)) + n(t) resulting in terms 0, 0, 64, 65472, 66912384, ... (this sequence).
a(n) = -((511+32*sqrt(255))^(-n)*(-1+(511+32*sqrt(255))^n)*(16+sqrt(255)+(-16+sqrt(255))*(511+32*sqrt(255))^n))/510. - Colin Barker, Jul 25 2016
a(n) = (16/255)*(-1 + ChebyshevU(n, 511) - 1021*ChebyshevU(n-1, 511)). - G. C. Greubel, Sep 25 2022

Extensions

More terms from Harvey P. Dale, Jan 01 2014
New name from Colin Barker, Feb 24 2014
Offset changed to 0 by Colin Barker, Mar 04 2014

A159679 a(n) are solutions of the 2 equations: 7*a(n) +1 = c(n)^2 and 9*a(n) +1 = b(n)^2.

Original entry on oeis.org

0, 32, 8160, 2072640, 526442432, 133714305120, 33962907058080, 8626444678447232, 2191082985418538880, 556526451851630428320, 141355527687328710254432, 35903747506129640774197440, 9119410511029241427935895360, 2316294366053921193054943224032
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!(32*x^2/((1-x)*(1-254*x+x^2)))); // G. C. Greubel, Jun 03 2018
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then
    n:=(a*a-1)/7: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
    # Second program
    seq((8/63)*(simplify(ChebyshevU(n,127) -253*ChebyshevU(n-1,127)) -1), n=1..30); # G. C. Greubel, Sep 27 2022
  • Mathematica
    LinearRecurrence[{255,-255,1}, {0, 32, 8160}, 50] (* or *) CoefficientList[Series[32*x^2/((1-x)*(x^2-254*x+1)), {x,0,50}], x] (* G. C. Greubel, Jun 03 2018 *)
  • PARI
    concat(0, Vec(32*x^2/(-x^3+255*x^2-255*x+1) + O(x^100))) \\ Colin Barker, Mar 18 2014
    
  • PARI
    a(n) = round((-16+(8+3*sqrt(7))*(127+48*sqrt(7))^(-n)+(8-3*sqrt(7))*(127+48*sqrt(7))^n)/126) \\ Colin Barker, Jul 25 2016
    
  • SageMath
    [(8/63)*(-1 + chebyshev_U(n, 127) - 253*chebyshev_U(n-1, 127)) for n in range(1,30)] # G. C. Greubel, Sep 27 2022

Formula

G.f.: 32*x^2 / ((1-x)*(1-254*x+x^2)).
c(n) = A157456(n).
b(n) = A159678(n).
a(n+3) = 255*(a(n+2) -a(n+1)) + a(n).
a(n) = 2*A077412(n-2)*A077412(n-1). - Johannes Boot, Jan 17 2011
a(n) = (-16+(8+3*sqrt(7))*(127+48*sqrt(7))^(-n)+(8-3*sqrt(7))*(127+48*sqrt(7))^n)/126. - Colin Barker, Jul 25 2016
a(n) = (8/63)*(-1 + ChebyshevU(n, 127) - 253*ChebyshevU(n-1, 127)). - G. C. Greubel, Sep 27 2022

Extensions

More terms from Colin Barker, Mar 18 2014

A159683 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 3*n(j) + 1 = a(j)*a(j) and 5*n(j) + 1 = b(j)*b(j) with positive integer numbers.

Original entry on oeis.org

0, 16, 1008, 62496, 3873760, 240110640, 14882985936, 922505017408, 57180428093376, 3544264036771920, 219687189851765680, 13617061506772700256, 844038126230055650208, 52316746764756677612656, 3242794261288683956334480, 201000927453133648615125120
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(16*x^2/((1-x)*(1-62*x+x^2)))); // G. C. Greubel, Jun 02 2018
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((5*a*a-2)/3): if (trunc(b)=b) then
    n:=(a*a-1)/3: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
    # Second program
    seq((4/15)*(simplify(ChebyshevU(n, 31) - 61*ChebyshevU(n-1, 31)) -1), n=1..30); # G. C. Greubel, Sep 27 2022
  • Mathematica
    CoefficientList[Series[16*x/((1-x)*(1-62*x+x^2)), {x, 0, 30}], x] (* G. C. Greubel, Jun 02 2018 *)
    LinearRecurrence[{63,-63,1},{0,16,1008},30] (* Harvey P. Dale, May 07 2022 *)
  • PARI
    concat(0, Vec(16*x^2/((1-x)*(1-62*x+x^2)) + O(x^30))) \\ Colin Barker, Sep 25 2015
    
  • SageMath
    [(4/15)*(-1 + chebyshev_U(n, 31) - 61*chebyshev_U(n-1, 31)) for n in range(1,30)] # G. C. Greubel, Sep 27 2022

Formula

The a(j) recurrence is a(1)=1, a(2)=7, a(t+2) = 8*a(t+1) - a(t) resulting in terms 1, 7, 55. 433, 3409, ... (A070997).
The b(j) recurrence is b(1)=1, b(2)=9, b(t+2) = 8*b(t+1) - b(t) resulting in terms 1, 9, 71, 559, 4401, ... (A057080).
The n(j) recurrence is n(0) = n(1) = 0, n(2)=16, n(t+3) = 63*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 16, 1008, 62496, ... (this sequence).
From Colin Barker, Sep 25 2015: (Start)
a(n) = 63*a(n-1) - 63*a(n-2) + a(n-3) for n>3.
G.f.: 16*x^2 / ((1-x)*(1-62*x+x^2)). (End)
a(n) = (-8+(4+sqrt(15))*(31+8*sqrt(15))^(-n) -(-4+sqrt(15))*(31+8*sqrt(15))^n)/30. - Colin Barker, Mar 03 2016
a(n) = (4/15)*(-1 + ChebyshevU(n, 31) - 61*ChebyshevU(n-1, 31)). - G. C. Greubel, Sep 27 2022

A266698 x-values of solutions to the Diophantine equation x^2 - 7*y^2 = 2.

Original entry on oeis.org

3, 45, 717, 11427, 182115, 2902413, 46256493, 737201475, 11748967107, 187246272237, 2984191388685, 47559815946723, 757972863758883, 12080006004195405, 192522123203367597, 3068273965249686147, 48899861320791610755, 779329507167416085933, 12420372253357865764173, 197946626546558436140835
Offset: 1

Views

Author

Sture Sjöstedt, Jan 03 2016

Keywords

Comments

A159678 gives the y-values of solutions to the Diophantine equation x^2 - 7*y^2 = 2.

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^7] | IsSquare((n^2-2)/7)]; // Vincenzo Librandi, Jan 06 2016
    
  • Mathematica
    LinearRecurrence[{16,-1}, {3, 45}, 20 ]
  • PARI
    lista(nn) = {print1(x = 3, ", "); print1(y = 45, ", "); for (n=2, nn, z = 16*y - x; print1(z, ", "); x = y; y = z;);} \\ Michel Marcus, Jan 05 2016
    
  • SageMath
    [3*(chebyshev_U(n-1, 8) - chebyshev_U(n-2, 8)) for n in (1..30)] # G. C. Greubel, Jun 25 2022

Formula

a(1)=3, a(2)=45, a(n) = 16*a(n-1) - a(n-2).
a(n) = A041008(4n-2). - Robert Israel, Jan 05 2016
From R. J. Mathar, Jan 12 2016: (Start)
G.f.: 3*x*(1-x) / ( 1-16*x+x^2 ).
a(n) = 3*A157456(n). (End)
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = 3*(ChebyshevU(n-1, 8) - ChebyshevU(n-2, 8)).
E.g.f.: exp(8*x)*(3*cosh(3*sqrt(7)*x) - sqrt(7)*sinh(3*sqrt(7)*x)) - 3. (End)

A159665 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j); with positive integer numbers.

Original entry on oeis.org

0, 48, 27600, 15842400, 9093510048, 5219658925200, 2996075129554800, 1719741904705530048, 987128857225844692800, 566610244305730148137200, 325233293102631879186060048, 186683343630666392922650330400, 107155914010709406905722103589600
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,48,27600]; [n le 3 select I[n] else 575*Self(n-1) -575*Self(n-2) +Self(n-3): n in [1..31]]; // G. C. Greubel, Jun 26 2022
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
    n:=(a*a-1)/11: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
  • Mathematica
    LinearRecurrence[{575,-575,1}, {0,48,27600}, 30] (* G. C. Greubel, Jun 26 2022 *)
  • PARI
    concat(0, Vec(-48*x^2/((x-1)*(x^2-574*x+1)) + O(x^30))) \\ Colin Barker, Sep 25 2015
    
  • PARI
    a(n) = round((-24+(12+sqrt(143))*(287+24*sqrt(143))^(-n)-(-12+sqrt(143))*(287+24*sqrt(143))^n)/286) \\ Colin Barker, Jul 26 2016
    
  • SageMath
    [(12/143)*(chebyshev_U(n,287) -573*chebyshev_U(n-1,287) -1) for n in (1..30)] # G. C. Greubel, Jun 26 2022

Formula

The a(j) recurrence is a(1)=1; a(2)=23; a(t+2) = 24*a(t+1) - a(t) resulting in terms 1, 23, 551, 13201, ... (A159664).
The b(j) recurrence is b(1)=1; b(2)=25; b(t+2) = 24*b(t+1) - b(t) resulting in terms 1, 25, 599, 14351, ... (A159661).
The n(j) recurrence is n(0)=n(1)=1; n(2)=48; n(t+3) = 575*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 48, 27600, 15842400 as listed above.
From Colin Barker, Sep 25 2015: (Start)
a(n) = 575*a(n-1) - 575*a(n-2) + a(n-3) for n > 3.
G.f.: 48*x^2 / ((1-x)*(1-574*x+x^2)). (End)
a(n) = (-24 + (12 + sqrt(143))*(287 + 24*sqrt(143))^(-n) - (-12 + sqrt(143))*(287 + 24*sqrt(143))^n)/286. - Colin Barker, Jul 26 2016
From G. C. Greubel, Jun 25 2022: (Start)
a(n) = (12/143)*(ChebyshevU(n, 287) - 573*ChebyshevU(n-1, 287) - 1).
E.g.f.: (12/143)*(exp(287*x)*( (sqrt(143)/12)*sinh(24*sqrt(143)*x) + cosh(24*sqrt(143)*x) ) - exp(x)). (End)

A159681 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 5*n(j)+1=a(j)*a(j) and 7*n(j)+1=b(j)*b(j) with positive integer numbers.

Original entry on oeis.org

0, 24, 3432, 487344, 69199440, 9825833160, 1395199109304, 198108447688032, 28130004372591264, 3994262512460271480, 567157146764985958920, 80532320578115545895184, 11435022364945642531157232, 1623692643501703123878431784, 230552920354876897948206156120
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients( R!(24*x^2/((1-x)*(1-142*x+x^2)))); // G. C. Greubel, Jun 03 2018
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((7*a*a-2)/5): if (trunc(b)=b) then
    n:=(a*a-1)/5: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
    # Second program
    seq((6/35)*(simplify(ChebyshevU(n,71) -141*ChebyshevU(n-1,71)) -1), n=1..30); # G. C. Greubel, Sep 27 2022
  • Mathematica
    LinearRecurrence[{143,-143,1}, {0, 24, 3432}, 30] (* or *) CoefficientList[Series[24*x^2/((1-x)*(1-142*x+x^2)), {x,0,30}], x] (* G. C. Greubel, Jun 03 2018 *)
  • PARI
    concat(0, Vec(-24*x^2/((x-1)*(x^2-142*x+1)) + O(x^20))) \\ Colin Barker, Jul 26 2016
    
  • PARI
    a(n) = round((-12+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/70) \\ Colin Barker, Jul 26 2016
    
  • SageMath
    [(6/35)*(-1 + chebyshev_U(n, 71) - 141*chebyshev_U(n-1, 71)) for n in range(1,30)] # G. C. Greubel, Sep 27 2022

Formula

The a(j) recurrence is a(1)=1, a(2)=11, a(t+2) = 12*a(t+1) - a(t) resulting in terms 1, 11, 131, 1561, ... (A077417).
The b(j) recurrence is b(1)=1, b(2)=13, b(t+2) = 12*b(t+1) - b(t) resulting in terms 1, 13, 155, 1847, ... (A077416).
The n(j) recurrence is n(0)=n(1)=0, n(2)=24, n(t+3) = 143*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 24, 3432, 487344, ... (this sequence).
G.f.: 24*x^2/((1-x)*(1-142*x+x^2)). - R. J. Mathar, Apr 20 2009
a(n) = (-12+(6+sqrt(35))*(71+12*sqrt(35))^(-n)-(-6+sqrt(35))*(71+12*sqrt(35))^n)/70. - Colin Barker, Jul 26 2016
a(n) = (6/35)*(ChebyshevU(n, 71) - 141*ChebyshevU(n-1, 71) - 1). - G. C. Greubel, Sep 27 2022

Extensions

More terms from R. J. Mathar, Apr 20 2009

A243470 Numerators of the rational convergents to the periodic continued fraction 1/(2 + 1/(7 + 1/(2 + 1/(7 + ...)))).

Original entry on oeis.org

1, 7, 15, 112, 239, 1785, 3809, 28448, 60705, 453383, 967471, 7225680, 15418831, 115157497, 245733825, 1835294272, 3916322369, 29249550855, 62415424079, 466157519408, 994730462895, 7429270759673, 15853271982241, 118402174635360, 252657621252961, 1887005523406087
Offset: 1

Views

Author

Peter Bala, Jun 06 2014

Keywords

Comments

The sequence of convergents to the simple periodic continued fraction 1/(2 + 1/(7 + 1/(2 + 1/(7 + ...)))) begins [0/1, 1/2, 7/15, 15/32, 112/239, 239/510, ...]. The present sequence is the sequence of numerators of the convergents. It is a strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. The sequence is closely related to A041111, the Lehmer numbers U_n(sqrt(R),Q) with parameters R = 14 and Q = -1.
See A243469 for the sequence of denominators to the convergents.

Crossrefs

Programs

  • Magma
    I:=[1,7,15,112]; [n le 4 select I[n] else 16*Self(n-2) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 21 2022
    
  • Mathematica
    LinearRecurrence[{0,16,0,-1},{1,7,15,112},30] (* Harvey P. Dale, Nov 06 2017 *)
  • PARI
    Vec(x*(1+7*x-x^2)/(1-16*x^2+x^4)+O(x^99)) \\ Charles R Greathouse IV, Nov 13 2015
    
  • SageMath
    def b(n): return chebyshev_U(n,8) # b=A077412
    def A243470(n): return 7*((n-1)%2)*b(n//2 -1) +(n%2)*(b((n-1)//2) -b((n-1)//2 -1))
    [A243470(n) for n in (1..30)] # G. C. Greubel, May 21 2022

Formula

Let alpha = ( sqrt(14) + sqrt(18) )/2 and beta = ( sqrt(14) - sqrt(18) )/2 be the roots of the equation x^2 - sqrt(14)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = 7*(alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(2*n + 1) = Product_{k = 1..n} (14 + 4*cos^2(k*Pi/(2*n+1)));
a(2*n) = 7*Product_{k = 1..n-1} (14 + 4*cos^2(k*Pi/(2*n))).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 2, a(2*n) = 7*a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 2*a(2*n) + a(2*n - 1).
Fourth-order recurrence: a(n) = 16*a(n - 2) - a(n - 4) for n >= 5.
O.g.f.: x*(1 + 7*x - x^2)/(1 - 16*x^2 + x^4).
a(2n-1) = A157456(n), a(2n) = 7*A077412(n-1). - Ralf Stephan, Jun 13 2014
a(n) = (1/2)*( 7*(1+(-1)^n)*ChebyshevU((n-2)/2, 8) + (1-(-1)^n)*(ChebyshevU((n- 1)/2, 8) - ChebyshevU((n-3)/2, 8)) ). - G. C. Greubel, May 21 2022

A159680 The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 9*n(j) + 1 = a(j)*a(j) and 11*n(j) + 1 = b(j)*b(j) with positive integer numbers.

Original entry on oeis.org

0, 40, 15960, 6352080, 2528111920, 1006182192120, 400457984351880, 159381271589856160, 63433345634778399840, 25246312181370213280200, 10047968814839710107119800, 3999066341994023252420400240, 1591618356144806414753212175760, 633460106679290959048526025552280
Offset: 1

Views

Author

Paul Weisenhorn, Apr 19 2009

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!(40*x^2/((1-x)*(1-398*x+x^2)))); // G. C. Greubel, Jun 03 2018
    
  • Maple
    for a from 1 by 2 to 100000 do b:=sqrt((9*a*a-2)/7): if (trunc(b)=b) then
    n:=(a*a-1)/7: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: end if: end do:
  • Mathematica
    LinearRecurrence[{399,-399,1}, {0,40,15960}, 50] (* G. C. Greubel, Jun 03 2018 *)
  • PARI
    a(n) = round((-20+(10+3*sqrt(11))*(199+60*sqrt(11))^(-n)+(10-3*sqrt(11))*(199+60*sqrt(11))^n)/198) \\ Colin Barker, Jul 26 2016
    
  • PARI
    concat(0, Vec(-40*x^2/((x-1)*(x^2-398*x+1)) + O(x^20))) \\ Colin Barker, Jul 26 2016
    
  • SageMath
    [(10/99)*(chebyshev_U(n, 199) -397*chebyshev_U(n-1, 199) -1) for n in (1..30)] # G. C. Greubel, Jun 26 2022

Formula

The a(j) recurrence is a(1)=1; a(2)=19; a(t+2) = 20*a(t+1) - a(t) resulting in terms 1, 19, 379, 7561, ... (A075839).
The b(j) recurrence is b(1)=1; b(2)=21; b(t+2) = 20*b(t+1) - b(t) resulting in terms 1, 21, 419, 8359, ... (A083043).
The n(j) recurrence is n(0)=n(1)=0; n(2)=40; n(t+3) = 399*(n(t+2) - n(t+1)) + n(t) resulting in terms 0, 0, 40, 15960, 6352080 as listed above
G.f.: 40*x^2/((1-x)*(1-398*x+x^2)). - R. J. Mathar, Apr 20 2009
a(n) = (-20 + (10 + 3*sqrt(11))*(199 + 60*sqrt(11))^(-n) + (10 - 3*sqrt(11))*(199 + 60*sqrt(11))^n)/198. - Colin Barker, Jul 26 2016
From G. C. Greubel, Jun 26 2022: (Start)
a(n) = (10/99)*( ChebyshevU(n, 199) - 397*ChebyshevU(n-1, 199) - 1 ).
E.g.f.: (10/99)*(exp(199*x)*( (3*sqrt(11)/10)*sinh(60*sqrt(11)*x) + cosh(60*sqrt(11)*x) ) - exp(x)). (End)

Extensions

More terms from R. J. Mathar, Apr 20 2009
Previous Showing 11-20 of 20 results.