cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A319281 Numbers of the form 16^i*(16*j + 1).

Original entry on oeis.org

1, 16, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 256, 257, 272, 273, 289, 305, 321, 337, 353, 369, 385, 401, 417, 433, 449, 465, 481, 497, 513, 528, 529, 545, 561, 577, 593, 609, 625, 641, 657, 673, 689, 705, 721, 737, 753, 769, 784
Offset: 1

Views

Author

Jianing Song, Sep 16 2018

Keywords

Comments

{a(n)} gives all positive fourth powers modulo all powers of 2, that is, positive fourth powers over 2-adic integers. So this sequence is closed under multiplication.

Crossrefs

A158057 is a proper subsequence.
Perfect powers over 2-adic integers:
Squares: positive: A234000; negative: A004215 (negated);
Cubes: A191257;
Fourth powers: positive: this sequence; negative: A319282 (negated).

Programs

  • PARI
    isA319281(n)= n\16^valuation(n, 16)%16==1
    
  • Python
    def A319281(n):
        if n<3: return 15*n-14
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n-1+x-sum((((x>>(i<<2))-1)>>4)+1 for i in range(x.bit_length()>>2))
        return bisection(f,n,n) # Chai Wah Wu, Feb 17 2025

Formula

a(n) = 15*n + O(log(n)).

A249356 8*A200975(n)-7 where A200975 are the numbers on the diagonals in Ulam's spiral.

Original entry on oeis.org

1, 17, 33, 49, 65, 97, 129, 161, 193, 241, 289, 337, 385, 449, 513, 577, 641, 721, 801, 881, 961, 1057, 1153, 1249, 1345, 1457, 1569, 1681, 1793, 1921, 2049, 2177, 2305, 2449, 2593, 2737, 2881, 3041, 3201, 3361, 3521, 3697, 3873, 4049, 4225, 4417, 4609, 4801
Offset: 1

Views

Author

Todd Silvestri, Oct 27 2014

Keywords

Comments

All elements are odd.
The pair (a(n), a(n+1)) is separated by A002265(n-1) elements in A158057.

Programs

  • Maple
    seq(2*n*(n+2)+(-1)^n-4*sin((Pi*n)/2), n=1..100); # Robert Israel, Nov 04 2014
  • Mathematica
    a[n_Integer/;n>0]:=2 n (n+2)+(-1)^n-4 Mod[n^2 (3 n+2),4,-1]
    CoefficientList[Series[-(x^5 - x^4 + 15 x + 1) / ((x - 1)^3 (x^3 + x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 16 2014 *)
    Table[2 n (n + 2) - (1 - (-1)^n) (1 - 2 I^(n + 1)) + 1, {n, 1, 50}] (* Bruno Berselli, Nov 18 2014 *)
    LinearRecurrence[{2,-1,0,1,-2,1},{1,17,33,49,65,97},50] (* Harvey P. Dale, Sep 29 2019 *)
  • PARI
    a(n) = 2*n*(n+2)+(-1)^n-4*round(sin((Pi*n)/2)) \\ Charles R Greathouse IV, Nov 17 2014

Formula

a(n) = 2*n*(n+2)+(-1)^n-4*sin((Pi*n)/2).
G.f.: - x*(x^5-x^4+15*x+1)/((x-1)^3*(x^3+x^2+x+1)).
a(n) = 2*a(n-1) - a(n-2) + 16 if n == 2 mod 4, a(n) = 2*a(n-1) - a(n-2) otherwise. - Robert Israel, Nov 04 2014
a(n) = 2*n*(n+2) - (1-(-1)^n)*(1-2*i^(n+1)) + 1, where i=sqrt(-1). - Bruno Berselli, Nov 18 2014

A215137 a(n) = 17*n + 1.

Original entry on oeis.org

1, 18, 35, 52, 69, 86, 103, 120, 137, 154, 171, 188, 205, 222, 239, 256, 273, 290, 307, 324, 341, 358, 375, 392, 409, 426, 443, 460, 477, 494, 511, 528, 545, 562, 579, 596, 613, 630, 647, 664, 681, 698, 715, 732, 749, 766, 783, 800, 817, 834, 851, 868, 885, 902, 919, 936, 953, 970
Offset: 0

Views

Author

Jeremy Gardiner, Aug 04 2012

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,18]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    Range[1, 100, 17]
    LinearRecurrence[{2,-1}, {1,18}, 50] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    for(n=0, 50, print1(17*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
    

Formula

From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1+16*x)/(1-x)^2.
E.g.f.: (17*x + 1)*exp(x). (End)

A005570 Number of walks on cubic lattice.

Original entry on oeis.org

17, 50, 99, 164, 245, 342, 455, 584, 729, 890, 1067, 1260, 1469, 1694, 1935, 2192, 2465, 2754, 3059, 3380, 3717, 4070, 4439, 4824, 5225, 5642, 6075, 6524, 6989, 7470, 7967, 8480, 9009, 9554, 10115, 10692, 11285, 11894, 12519, 13160, 13817, 14490, 15179, 15884, 16605
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A158057.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [8*n^2 + 9*n : n in [1..40]]; // Vincenzo Librandi, Nov 05 2014
  • Mathematica
    CoefficientList[Series[(17 - x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 05 2014 *)
  • PARI
    Vec((17-x)/(1-x)^3 + O(x^50)) \\ Michel Marcus, Nov 05 2014
    

Formula

a(n) = 8*n^2 + 9*n.
G.f.: (17-x)/(1-x)^3. Simon Plouffe in his 1992 dissertation.
a(n) = 16*A000217(n) + n. - Jon Perry, Nov 05 2014
Sum_{n>=1} 1/a(n) = 80/81 +Psi(1/8)/9+gamma/9 = 0.11973.. see A001620 and A250129. - R. J. Mathar, May 30 2022
Sum_{n>=1} 1/a(n) = 80/81 - (sqrt(2)+1)*Pi/18 - log(1+sqrt(2))*sqrt(2)/9 -4*log(2)/9. - Amiram Eldar, Sep 10 2022
From Elmo R. Oliveira, Jan 28 2025: (Start)
E.g.f.: exp(x)*x*(17 + 8*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Formula and more terms from Jeffrey Shallit, Aug 15 1995

A158056 a(n) = 16*n^2 + 2*n.

Original entry on oeis.org

18, 68, 150, 264, 410, 588, 798, 1040, 1314, 1620, 1958, 2328, 2730, 3164, 3630, 4128, 4658, 5220, 5814, 6440, 7098, 7788, 8510, 9264, 10050, 10868, 11718, 12600, 13514, 14460, 15438, 16448, 17490, 18564, 19670, 20808, 21978, 23180, 24414, 25680
Offset: 1

Views

Author

Vincenzo Librandi, Mar 12 2009

Keywords

Comments

The identity (16*n + 1)^2 - (16*n^2 + 2*n)*4^2 = 1 can be written as A158057(n)^2 - a(n)*4^2 = 1. - Vincenzo Librandi, Feb 09 2012
Sequence found by reading the line from 18, in the direction 18, 68, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Cf. A158057.

Programs

  • Magma
    I:=[18, 68, 150]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{18,68,150},50]
    Table[16n^2+2n,{n,40}]  (* Harvey P. Dale, Apr 13 2011 *)
  • PARI
    a(n) = 16*n^2 + 2*n.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(-9 - 7*x)/(x-1)^3.

A360962 Square array T(n,k) = k*((3+6*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 4, 5, 0, 7, 17, 12, 0, 10, 29, 39, 22, 0, 13, 41, 66, 70, 35, 0, 16, 53, 93, 118, 110, 51, 0, 19, 65, 120, 166, 185, 159, 70, 0, 22, 77, 147, 214, 260, 267, 217, 92, 0, 25, 89, 174, 262, 335, 375, 364, 284, 117, 0, 28, 101, 201, 310, 410, 483, 511, 476, 360, 145
Offset: 0

Views

Author

Paul Curtz, Feb 27 2023

Keywords

Comments

The main diagonal is A024394.
The antidiagonals sums are A000537.

Examples

			The rows are:
  0  1  5  12  22  35  51  70 ... = A000326
  0  4 17  39  70 110 159 217 ... = A022266
  0  7 29  66 118 185 267 364 ... = A022272
  0 10 41  93 166 260 375 511 ... = A022278
  0 13 53 120 214 335 483 658 ... = A022284
  ... .
Columns: A000004, A016777, A017581, A154266=3*A017209, 2*A348845, 5*A161447, 3*A158057(n+1), ... (coefficients from A026741).
Difference between two consecutive rows are: A033428.
This square array read by antidiagonals leads to the triangle
  0
  0  1
  0  4  5
  0  7 17 12
  0 10 29 39  22
  0 13 41 66  70  35
  0 16 53 93 118 110 51
  ... .
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> k*(k*(3+6*n)-1)/2:
    seq(seq(T(d-k,k), k=0..d), d=0..10);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    T[n_, k_] := ((6*n + 3)*k - 1)*k/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    T(n,k) = k*((3+6*n)*k-1)/2; \\ Michel Marcus, Feb 27 2023

Formula

Take successively sequences n*(3*n-1)/2, n*(9*n-1)/2, n*(15*n-1)/2, n*(21*n-1)/2, ... listed in the EXAMPLE section.
From Stefano Spezia, Feb 21 2024: (Start)
G.f.: y*(1 + 2*y + x*(2 + y))/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + 3*y + 6*x*(1 + y))/2. (End)

A367882 Table T(n, k) read by downward antidiagonals: T(n, k) = floor((4*T(n, k-1)+3)/3) starting with T(n, 0) = 4*n.

Original entry on oeis.org

0, 1, 4, 2, 6, 8, 3, 9, 11, 12, 5, 13, 15, 17, 16, 7, 18, 21, 23, 22, 20, 10, 25, 29, 31, 30, 27, 24, 14, 34, 39, 42, 41, 37, 33, 28, 19, 46, 53, 57, 55, 50, 45, 38, 32, 26, 62, 71, 77, 74, 67, 61, 51, 43, 36, 35, 83, 95, 103, 99, 90, 82, 69, 58, 49, 40
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2023

Keywords

Comments

Permutation of nonnegative numbers.
Let b(m) be the row n in which m appears, this sequence would start: 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3,... . If we would remove in this sequence the first appearance of each number then we would obtain again the same sequence, hence b(m) is a fractal sequence. - Thomas Scheuerle, Dec 04 2023

Examples

			Square array starts:
  0,   1,   2,   3,   5,   7, ...
  4,   6,   9,  13,  18,  25, ...
  8,  11,  15,  21,  29,  39, ...
 12,  17,  23,  31,  42,  57, ...
 16,  22,  30,  41,  55,  74, ...
 ...
		

Crossrefs

Programs

Formula

T(n, 0) = 4*n = A008586(n).
T(3*n, 1) = 16*n + 1 = A158057(n).
T(3*n+1, 1) = 16*n + 6 = 2*A017101(n).
T(3*n+2, 1) = 16*n + 11 = A106839(n).
T(3^k+n, k) = 4^(k+1) + T(n, k). - Thomas Scheuerle, Dec 04 2023

Extensions

More terms from Paolo Xausa, Apr 03 2024

A376102 Array read by ascending antidiagonals: A(n,k) = k*2^(n+1) + 1.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 9, 9, 7, 1, 17, 17, 13, 9, 1, 33, 33, 25, 17, 11, 1, 65, 65, 49, 33, 21, 13, 1, 129, 129, 97, 65, 41, 25, 15, 1, 257, 257, 193, 129, 81, 49, 29, 17, 1, 513, 513, 385, 257, 161, 97, 57, 33, 19, 1, 1025, 1025, 769, 513, 321, 193, 113, 65, 37, 21
Offset: 0

Views

Author

Stefano Spezia, Sep 14 2024

Keywords

Comments

In 1747, Euler showed that any factor of a Fermat number A000215(n) is of the form k*2^(n+1) + 1. See Wells at p. 148.

Examples

			The array begins as:
  1,   3,   5,   7,   9,  11,  13, ...
  1,   5,   9,  13,  17,  21,  25, ...
  1,   9,  17,  25,  33,  41,  49, ...
  1,  17,  33,  49,  65,  81,  97, ...
  1,  33,  65,  97, 129, 161, 193, ...
  1,  65, 129, 193, 257, 321, 385, ...
  1, 129, 257, 385, 513, 641, 769, ...
  ...
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 70-71, 237-242.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 136.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987.

Crossrefs

Cf. A000012 (k=0), A000051, A000337, A004119, A005408 (n=0), A016813 (n=1), A017077 (n=2), A158057 (n=3).

Programs

  • Mathematica
    A[n_,k_]:=k*2^(n+1)+1; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

G.f.: (1 - 2*x + y)/((1 - x)*(1 - 2*x)*(1 - y)^2).
E.g.f.: exp(x+y)*(1 + 2*exp(x)*y).
Sum_{0<=k<=n} A(n-k,k) = A000295(n+2).
A(n,1) = A000051(n+1).
A(n,3) = A004119(n+2).
A(n,n) = A000337(n+1).
Previous Showing 11-18 of 18 results.