A319281
Numbers of the form 16^i*(16*j + 1).
Original entry on oeis.org
1, 16, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 256, 257, 272, 273, 289, 305, 321, 337, 353, 369, 385, 401, 417, 433, 449, 465, 481, 497, 513, 528, 529, 545, 561, 577, 593, 609, 625, 641, 657, 673, 689, 705, 721, 737, 753, 769, 784
Offset: 1
Perfect powers over 2-adic integers:
Fourth powers: positive: this sequence; negative:
A319282 (negated).
-
isA319281(n)= n\16^valuation(n, 16)%16==1
-
def A319281(n):
if n<3: return 15*n-14
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n-1+x-sum((((x>>(i<<2))-1)>>4)+1 for i in range(x.bit_length()>>2))
return bisection(f,n,n) # Chai Wah Wu, Feb 17 2025
A249356
8*A200975(n)-7 where A200975 are the numbers on the diagonals in Ulam's spiral.
Original entry on oeis.org
1, 17, 33, 49, 65, 97, 129, 161, 193, 241, 289, 337, 385, 449, 513, 577, 641, 721, 801, 881, 961, 1057, 1153, 1249, 1345, 1457, 1569, 1681, 1793, 1921, 2049, 2177, 2305, 2449, 2593, 2737, 2881, 3041, 3201, 3361, 3521, 3697, 3873, 4049, 4225, 4417, 4609, 4801
Offset: 1
-
seq(2*n*(n+2)+(-1)^n-4*sin((Pi*n)/2), n=1..100); # Robert Israel, Nov 04 2014
-
a[n_Integer/;n>0]:=2 n (n+2)+(-1)^n-4 Mod[n^2 (3 n+2),4,-1]
CoefficientList[Series[-(x^5 - x^4 + 15 x + 1) / ((x - 1)^3 (x^3 + x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 16 2014 *)
Table[2 n (n + 2) - (1 - (-1)^n) (1 - 2 I^(n + 1)) + 1, {n, 1, 50}] (* Bruno Berselli, Nov 18 2014 *)
LinearRecurrence[{2,-1,0,1,-2,1},{1,17,33,49,65,97},50] (* Harvey P. Dale, Sep 29 2019 *)
-
a(n) = 2*n*(n+2)+(-1)^n-4*round(sin((Pi*n)/2)) \\ Charles R Greathouse IV, Nov 17 2014
A215137
a(n) = 17*n + 1.
Original entry on oeis.org
1, 18, 35, 52, 69, 86, 103, 120, 137, 154, 171, 188, 205, 222, 239, 256, 273, 290, 307, 324, 341, 358, 375, 392, 409, 426, 443, 460, 477, 494, 511, 528, 545, 562, 579, 596, 613, 630, 647, 664, 681, 698, 715, 732, 749, 766, 783, 800, 817, 834, 851, 868, 885, 902, 919, 936, 953, 970
Offset: 0
-
I:=[1,18]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
-
Range[1, 100, 17]
LinearRecurrence[{2,-1}, {1,18}, 50] (* G. C. Greubel, Apr 19 2018 *)
-
for(n=0, 50, print1(17*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
A005570
Number of walks on cubic lattice.
Original entry on oeis.org
17, 50, 99, 164, 245, 342, 455, 584, 729, 890, 1067, 1260, 1469, 1694, 1935, 2192, 2465, 2754, 3059, 3380, 3717, 4070, 4439, 4824, 5225, 5642, 6075, 6524, 6989, 7470, 7967, 8480, 9009, 9554, 10115, 10692, 11285, 11894, 12519, 13160, 13817, 14490, 15179, 15884, 16605
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jeremy Gardiner, Table of n, a(n) for n = 1..999
- Richard K. Guy, Letter to N. J. A. Sloane, May 1990.
- Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article 00.1.6 (see figure 7).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
A158056
a(n) = 16*n^2 + 2*n.
Original entry on oeis.org
18, 68, 150, 264, 410, 588, 798, 1040, 1314, 1620, 1958, 2328, 2730, 3164, 3630, 4128, 4658, 5220, 5814, 6440, 7098, 7788, 8510, 9264, 10050, 10868, 11718, 12600, 13514, 14460, 15438, 16448, 17490, 18564, 19670, 20808, 21978, 23180, 24414, 25680
Offset: 1
-
I:=[18, 68, 150]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
-
LinearRecurrence[{3,-3,1},{18,68,150},50]
Table[16n^2+2n,{n,40}] (* Harvey P. Dale, Apr 13 2011 *)
-
a(n) = 16*n^2 + 2*n.
A360962
Square array T(n,k) = k*((3+6*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.
Original entry on oeis.org
0, 0, 1, 0, 4, 5, 0, 7, 17, 12, 0, 10, 29, 39, 22, 0, 13, 41, 66, 70, 35, 0, 16, 53, 93, 118, 110, 51, 0, 19, 65, 120, 166, 185, 159, 70, 0, 22, 77, 147, 214, 260, 267, 217, 92, 0, 25, 89, 174, 262, 335, 375, 364, 284, 117, 0, 28, 101, 201, 310, 410, 483, 511, 476, 360, 145
Offset: 0
The rows are:
0 1 5 12 22 35 51 70 ... = A000326
0 4 17 39 70 110 159 217 ... = A022266
0 7 29 66 118 185 267 364 ... = A022272
0 10 41 93 166 260 375 511 ... = A022278
0 13 53 120 214 335 483 658 ... = A022284
... .
Columns: A000004, A016777, A017581, A154266=3*A017209, 2*A348845, 5*A161447, 3*A158057(n+1), ... (coefficients from A026741).
Difference between two consecutive rows are: A033428.
This square array read by antidiagonals leads to the triangle
0
0 1
0 4 5
0 7 17 12
0 10 29 39 22
0 13 41 66 70 35
0 16 53 93 118 110 51
... .
-
T:= (n,k)-> k*(k*(3+6*n)-1)/2:
seq(seq(T(d-k,k), k=0..d), d=0..10); # Alois P. Heinz, Feb 28 2023
-
T[n_, k_] := ((6*n + 3)*k - 1)*k/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 27 2023 *)
-
T(n,k) = k*((3+6*n)*k-1)/2; \\ Michel Marcus, Feb 27 2023
A367882
Table T(n, k) read by downward antidiagonals: T(n, k) = floor((4*T(n, k-1)+3)/3) starting with T(n, 0) = 4*n.
Original entry on oeis.org
0, 1, 4, 2, 6, 8, 3, 9, 11, 12, 5, 13, 15, 17, 16, 7, 18, 21, 23, 22, 20, 10, 25, 29, 31, 30, 27, 24, 14, 34, 39, 42, 41, 37, 33, 28, 19, 46, 53, 57, 55, 50, 45, 38, 32, 26, 62, 71, 77, 74, 67, 61, 51, 43, 36, 35, 83, 95, 103, 99, 90, 82, 69, 58, 49, 40
Offset: 0
Square array starts:
0, 1, 2, 3, 5, 7, ...
4, 6, 9, 13, 18, 25, ...
8, 11, 15, 21, 29, 39, ...
12, 17, 23, 31, 42, 57, ...
16, 22, 30, 41, 55, 74, ...
...
-
A367882[n_, k_] := A367882[n, k] = If[k == 0, 4*n, Floor[4*A367882[n, k-1]/3 + 1]];
Table[A367882[k, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 03 2024 *)
-
T(n, k) = if(k==0, 4*n, (4*T(n, k-1)+3)\3) \\ Thomas Scheuerle, Dec 04 2023
A376102
Array read by ascending antidiagonals: A(n,k) = k*2^(n+1) + 1.
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 9, 9, 7, 1, 17, 17, 13, 9, 1, 33, 33, 25, 17, 11, 1, 65, 65, 49, 33, 21, 13, 1, 129, 129, 97, 65, 41, 25, 15, 1, 257, 257, 193, 129, 81, 49, 29, 17, 1, 513, 513, 385, 257, 161, 97, 57, 33, 19, 1, 1025, 1025, 769, 513, 321, 193, 113, 65, 37, 21
Offset: 0
The array begins as:
1, 3, 5, 7, 9, 11, 13, ...
1, 5, 9, 13, 17, 21, 25, ...
1, 9, 17, 25, 33, 41, 49, ...
1, 17, 33, 49, 65, 81, 97, ...
1, 33, 65, 97, 129, 161, 193, ...
1, 65, 129, 193, 257, 321, 385, ...
1, 129, 257, 385, 513, 641, 769, ...
...
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 70-71, 237-242.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 136.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987.
-
A[n_,k_]:=k*2^(n+1)+1; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Comments