cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 74 results. Next

A001722 Generalized Stirling numbers.

Original entry on oeis.org

1, 18, 251, 3325, 44524, 617624, 8969148, 136954044, 2201931576, 37272482280, 663644774880, 12413008539360, 243533741849280, 5003753991174720, 107497490419296000, 2410964056571616000, 56366432074677312000, 1371711629236971456000, 34699437370290760704000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=3,n=5) ~ exp(-x)/x^3*(1 - 18/x + 251/x^2 - 3325/x^3 + 44524/x^4 - 617624/x^5 + ... ) leads to the sequence given above. See A163931 and A163932 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[Sum[(-1)^(n + k)*Binomial[k + 2, 2]*5^k*StirlingS1[n + 2, k + 2], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+2, 2)*5^k*Stirling1(n+2, k+2). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n-2) = |f(n,2,5)|, for n >= 2. - Milan Janjic, Dec 21 2008

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

A001723 Generalized Stirling numbers.

Original entry on oeis.org

1, 26, 485, 8175, 134449, 2231012, 37972304, 668566300, 12230426076, 232959299496, 4623952866312, 95644160132976, 2060772784375824, 46219209678691200, 1078100893671811200, 26129183717351462400, 657337657573760947200, 17147815411007234188800
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=4,n=5) ~ exp(-x)/x^4*(1 - 26/x + 485/x^2 - 8175/x^3 + 134449/x^4 - 2231012/x^5 + ...) leads to the sequence given above. See A163931 and A163934 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[Sum[(-1)^(n + k)*Binomial[k + 3, 3]*5^k*StirlingS1[n + 3, k + 3], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(3+k, 3)*5^k*Stirling1(n+3, k+3). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n-3) = |f(n,3,5)|, for n >= 3. - Milan Janjic, Dec 21 2008

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

A001724 Generalized Stirling numbers.

Original entry on oeis.org

1, 35, 835, 17360, 342769, 6687009, 131590430, 2642422750, 54509190076, 1159615530788, 25497032420496, 580087776122400, 13662528306823824, 333132304121991504, 8407011584355624288, 219490450157530821024, 5925108461354500651776, 165275526944869750483200
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=5,n=5) ~ exp(-x)/x^5*(1 - 35/x + 835/x^2 - 17360/x^3 + 342769/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[Sum[(-1)^(n + k)*Binomial[k + 4, 4]*5^k*StirlingS1[n + 4, k + 4], {k, 0, n}], {n, 0, 20}] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+4, 4)*5^k*stirling(n+4, k+4, 1)) \\ Michel Marcus, Jan 20 2016

Formula

a(n) = sum((-1)^(n+k)*binomial(k+4, 4)*5^k*stirling1(n+4, k+4), k=0..n). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
E.g.f.: (6-156*log(1-x)+753*log(1-x)^2-1066*log(1-x)^3+420*log(1-x)^4)/(6*(1-x)^9). - Vladeta Jovovic, Mar 01 2004
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n-4) = |f(n,4,5)|, for n>=4. - Milan Janjic, Dec 21 2008

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

A262343 Numerator of 3*(1-2/n), for n >= 3.

Original entry on oeis.org

1, 3, 9, 2, 15, 9, 7, 12, 27, 5, 33, 18, 13, 21, 45, 8, 51, 27, 19, 30, 63, 11, 69, 36, 25, 39, 81, 14, 87, 45, 31, 48, 99, 17, 105, 54, 37, 57, 117, 20, 123, 63, 43, 66, 135, 23, 141, 72, 49, 75, 153, 26, 159, 81, 55, 84, 171, 29, 177, 90, 61, 93, 189, 32
Offset: 3

Views

Author

Kival Ngaokrajang, Sep 18 2015

Keywords

Comments

Given a regular n-gon with side length s, draw a circular arc of radius s around each of the n-gon's vertices so as to connect that vertex's two nearest neighbors, drawing the arc on the shorter side of the circle; i.e., each arc will extend through an angle of Pi*(n-2)/n radians (see illustration). Connect the n arcs thus drawn into a single closed curve if n is odd, or into a pair of identical (but with one rotated by 2*Pi/n radians with respect to the other) overlapping closed curves if n is even. The arcs and the curve (or pair of curves) have the following properties:
(i) Since the length L(n) of each single arc is L(n) = s*Pi*(n-2)/n, the ratio of the length of a single arc for an n-gon to the length of a single arc for the n=3 case is L(n)/L(3) = (s*Pi*(n-2)/n)/(s*Pi*(3-2)/3) = 3(1-2/n). The numerator and denominator of 3(1-2/n) are a(n) and A060789(n) respectively.
(ii) Since the loop length (considering only one of the two loops when there are two overlapping loops) is L(n)*n when n is odd, or L(n)*n/2 when n is even, the ratio of the loop length for an n-gon to the loop length for the n=3 case is (L(n)*n)/(L(3)*3) = (s*Pi*(n-2))/(s*Pi) = n-2 when n is odd, or (L(n)*n/2)/(L(3)*3) = (s*Pi*(n-2)/2)/(s*Pi) = (n-2)/2 when n is even; thus, whether odd or even, that ratio is numerator(1-2/n) = A026741(n-2).
The moment generating function of p(x, m=1, n=2, mu=2) = 3*x*E(x, 1, 2), see A163931 and A274181, is given by M(a) = (3*a-6)/(a^2*(a-1)) + 6*log(1-a)/a^3. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 04 2016

Crossrefs

Programs

  • Magma
    [Numerator(3*(1-2/n)): n in [3..80]]; // Vincenzo Librandi, Sep 19 2015
    
  • Maple
    a:= proc(n): numer(3*(n-2)/n) end: seq(a(n), n=3..66); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    Table[Numerator[3 (1 - 2/n)], {n, 3, 60}] (* Michael De Vlieger, Sep 18 2015 *)
  • PARI
    {for(n=3, 100, a=numerator(3*(1-2/n)); print1 (a, ", "))}
    
  • PARI
    Vec(x^3*(3*x^10+x^9+9*x^8+6*x^7+5*x^6+9*x^5+15*x^4+2*x^3+9*x^2+3*x+1)/((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 20 2015

Formula

a(n) = numerator(3*(1-2/n)), for n >= 3.
From Peter Kagey, Sep 18 2015: (Start)
For integers k:
a(6k+0) = 3 * k - 1
a(6k+1) = 18 * k - 3
a(6k+2) = 9 * k + 1
a(6k+3) = 6 * k + 1
a(6k+4) = 9 * k + 3
a(6k+5) = 18 * k + 9
(End)
From Colin Barker, Sep 20 2015: (Start)
a(n) = 2*a(n-6) - a(n-12).
G.f.: x^3*(3*x^10+x^9+9*x^8+6*x^7+5*x^6+9*x^5+15*x^4+2*x^3+9*x^2+3*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)^2*(x^2+x+1)^2).
(End)

Extensions

More terms from Vincenzo Librandi, Sep 19 2015

A051525 Third unsigned column of triangle A051338.

Original entry on oeis.org

0, 0, 1, 21, 335, 5000, 74524, 1139292, 18083484, 299705400, 5198985576, 94461323616, 1797180658272, 35776357096896, 744402741205824, 16169795109262080, 366214212167489280, 8636605663418933760
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=6) ~ exp(-x)/x^3*(1 - 21/x + 335/x^2 - 5000/x^3 + 74524/x^4 - 1139292/x^5 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051338.

Crossrefs

Cf. A001725 (m=0), A051524 (m=1) unsigned columns.

Formula

a(n) = A051338(n, 2)*(-1)^n; e.g.f.: (log(1-x))^2/(2*(1-x)^6).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,6)|, for n>=1. - Milan Janjic, Dec 21 2008

A051546 Third unsigned column of triangle A051339.

Original entry on oeis.org

0, 0, 1, 24, 431, 7155, 117454, 1961470, 33775244, 603682596, 11235811536, 218055250512, 4413843664416, 93156324734304, 2048591287486080, 46898664421553280, 1116592842912341760, 27618683992928743680
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=7) ~ exp(-x)/x^3*(1 - 24/x + 431/x^2 - 7155/x^3 + 117454/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051339.

Crossrefs

Cf. A001730 (m=0), A051545 (m=1) unsigned columns.

Formula

a(n) = A051339(n, 2)*(-1)^n; e.g.f.: (log(1-x))^2/(2*(1-x)^7).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,7)|, for n>=1. - Milan Janjic, Dec 21 2008

A051561 Third unsigned column of triangle A051379.

Original entry on oeis.org

0, 0, 1, 27, 539, 9850, 176554, 3197348, 59354028, 1137868848, 22614500016, 466814750688, 10015620672672, 223359393479040, 5175622796192640, 124533006364442880, 3109120944743427840, 80473740053567016960
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=8) ~ exp(-x)/x^3*(1 - 27/x + 539/x^2 - 9850/x^3 + 176554/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051379.

Crossrefs

Cf. A049388 (m=0), A051560 (m=1) unsigned columns.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[(Log[1-x])^2/(2(1-x)^8),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 10 2013 *)

Formula

a(n) = A051379(n, 2)*(-1)^n; e.g.f.: ((log(1-x))^2)/(2*(1-x)^8).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,8)|, for n>=1. - Milan Janjic, Dec 21 2008

A074246 Triangle of coefficients, read by rows, where the n-th row forms the polynomial P(n,x) = {Sum_{k=1..n} 1/(k+x)}*{Product_{k=1..n} (k+x)}.

Original entry on oeis.org

1, 3, 2, 11, 12, 3, 50, 70, 30, 4, 274, 450, 255, 60, 5, 1764, 3248, 2205, 700, 105, 6, 13068, 26264, 20307, 7840, 1610, 168, 7, 109584, 236248, 201852, 89796, 22680, 3276, 252, 8, 1026576, 2345400, 2171040, 1077300, 316365, 56700, 6090, 360, 9
Offset: 1

Views

Author

Paul D. Hanna, Sep 19 2002

Keywords

Comments

The n-th row polynomial, P(n,x), has ordered zeros {z_k < z_(k+1), 0
The higher-order exponential integrals E(x,m,n) are defined in A163931 and the asymptotic expansion of E(x,m=2,n) can be found in A028421. We determined with the latter that E(x,m=2,n+1) = (exp(-x)/x^2)*(1 - (3+2*n)/x + (11+12*n+3*n^2)/x^2 - (50+70*n+30*n^2+ 4*n^3)/x^3 + .... ). The polynomial coefficients in the numerators lead to the coefficients of the triangle given above. The numerators of the o.g.f.s of the right hand columns of this triangle lead for z = 1 to A001147. - Johannes W. Meijer, Oct 16 2009

Examples

			Polynomials begin:
P(1,x) = 1,
P(2,x) = 3 + 2x,
P(3,x) = 11 + 12x + 3x^2,
P(4,x) = 50 + 70x + 30x^2 + 4x^3,
P(5,x) = 274 + 450x + 255x^2 + 60x^3 + 5x^4,
P(6,x) = 1764 + 3248x + 2205x^2 + 700x^3 + 105x^4 + 6x^5,
P(7,x) = 13068 + 26264x + 20307x^2 + 7840x^3 + 1610x^4 + 168x^5 + 7x^6,
P(8,x) = 109584 + 236248x + 201852x^2 + 89796x^3 + 22680x^4 + 3276x^5 + 252x^6 + 8x^7,
P(9,x) = 1026576 + 2345400x + 2171040x^2 + 1077300x^3 + 316365x^4 + 56700x^5 + 6090x^6 + 360x^7 + 9x^8,
P(10,x) = 10628640 + 25507152x + 25228500x^2 + 13667720x^3 + 4510275x^4 + 946638x^5 + 127050x^6 + 10560x^7 + 495x^8 + 10x^9, ...
		

Crossrefs

See references and formulas at A000254, A001705. Cf. A028421.
A027480 is the second right hand column. - Johannes W. Meijer, Oct 16 2009

Programs

  • Maple
    with(combinat): A074246 := proc(n,m): (-1)^(n+m)*binomial(m,1)*stirling1(n+1,m+1) end: seq(seq(A074246(n,m),m=1..n),n=1..9); # Johannes W. Meijer, Oct 16 2009, Revised Sep 09 2012
  • Mathematica
    p[n_, x_] := Sum[1/(k+x), {k, 1, n}] Product[k+x, {k, 1, n}] ; Flatten[Table[ CoefficientList[ p[n, x] // Simplify[#, ComplexityFunction -> Length] &, x], {n, 1, 9}]] (* Jean-François Alcover, May 04 2011 *)
  • PARI
    P(n) = Vecrev(sum(k=1, n, prod(k=1, n, (k+x))/(k+x)));
    for (n=1, 10, print(P(n))) \\ Michel Marcus, Jan 22 2017

Formula

First column is A000254 (Stirling numbers of first kind s(n, 2): a(n+1)=(n+1)*a(n)+n!), while sum of rows is A001705 (generalized Stirling numbers). Also related to Harmonic numbers: P(n, 0)=n!*H(n), H(n)=harmonic number.
T(n,k) = (-1)^(n+k)*k*Stirling1(n+1,k+1). - Johannes W. Meijer, Oct 16 2009
E.g.f.: 1/(1 - z)^(x+1)*log(1/(1 - z)). Cf. A028421. - Peter Bala, Jan 06 2015

A367732 Decimal expansion of Sum_{k>=1} (-1)^(k+1) / (k^2 * k!).

Original entry on oeis.org

8, 9, 1, 2, 1, 2, 7, 9, 8, 1, 1, 1, 3, 0, 2, 3, 7, 6, 0, 6, 9, 8, 5, 7, 8, 6, 2, 4, 5, 5, 3, 5, 4, 6, 2, 5, 1, 6, 9, 6, 0, 1, 2, 5, 1, 1, 9, 7, 9, 4, 8, 3, 2, 4, 8, 6, 8, 7, 7, 4, 5, 4, 1, 2, 3, 1, 6, 6, 5, 2, 5, 5, 7, 8, 8, 0, 6, 9, 7, 2, 2, 8, 7, 3, 7, 5, 0, 0, 3, 5, 7, 0, 7, 1, 8, 2, 2, 5, 1, 8
Offset: 0

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			0.89121279811130237606985786245535...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, -1], 10, 100][[1]]

A051563 Third unsigned column of triangle A051380.

Original entry on oeis.org

0, 0, 1, 30, 659, 13145, 255424, 4985316, 99236556, 2030997852, 42924478536, 938984014584, 21283428847680, 500043968498880, 12176238355176960, 307176581692097280, 8023946251816984320, 216880826334455750400
Offset: 0

Keywords

Comments

From Johannes W. Meijer, Oct 20 2009: (Start)
The asymptotic expansion of the higher order exponential integral E(x,m=3,n=9) ~ exp(-x)/x^3*(1 - 30/x + 659/x^2 - 13145/x^3 + 255424/x^4 + ...) leads to the sequence given above. See A163931 and A163932 for more information.
(End)

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051380.

Crossrefs

Cf. A049389 (m=0), A051562 (m=1) unsigned columns.

Formula

a(n) = A051380(n, 2)*(-1)^n; e.g.f.: ((log(1-x))^2)/(2*(1-x)^9).
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then a(n) = |f(n,2,9)|, for n>=1. - Milan Janjic, Dec 21 2008
Previous Showing 61-70 of 74 results. Next