A000482
Unsigned Stirling numbers of first kind s(n,5).
Original entry on oeis.org
1, 15, 175, 1960, 22449, 269325, 3416930, 45995730, 657206836, 9957703756, 159721605680, 2706813345600, 48366009233424, 909299905844112, 17950712280921504, 371384787345228000, 8037811822645051776, 181664979520697076096, 4280722865357147142912, 105005310755917452984576
Offset: 5
(-log(1-x))^5 = x^5 + 5/2*x^6 + 25/6*x^7 + 35/6*x^8 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Shanzhen Gao, Permutations with Restricted Structure (in preparation) [Shanzhen Gao, Sep 14 2010]
-
Abs[StirlingS1[Range[5,30],5]] (* Harvey P. Dale, May 26 2014 *)
-
for(n=4,50,print1(polcoeff(prod(i=1,n,x+i),4,x),","))
-
[stirling_number1(i,5) for i in range(5,22)] # Zerinvary Lajos, Jun 27 2008
A001233
Unsigned Stirling numbers of first kind s(n,6).
Original entry on oeis.org
1, 21, 322, 4536, 63273, 902055, 13339535, 206070150, 3336118786, 56663366760, 1009672107080, 18861567058880, 369012649234384, 7551527592063024, 161429736530118960, 3599979517947607200, 83637381699544802976, 2021687376910682741568, 50779532534302850198976, 1323714091579185857760000
Offset: 6
(-log(1-x))^6 = x^6 + 3*x^7 + 23/4*x^8 + 9*x^9 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Drop[Abs[StirlingS1[Range[30],6]],5] (* Harvey P. Dale, Sep 17 2013 *)
-
for(n=5,50,print1(polcoeff(prod(i=1,n,x+i),5,x),","))
-
[stirling_number1(i,6) for i in range(6,22)] # Zerinvary Lajos, Jun 27 2008
A001234
Unsigned Stirling numbers of the first kind s(n,7).
Original entry on oeis.org
1, 28, 546, 9450, 157773, 2637558, 44990231, 790943153, 14409322928, 272803210680, 5374523477960, 110228466184200, 2353125040549984, 52260903362512720, 1206647803780373360, 28939583397335447760
Offset: 7
G.f. = x^7 + 28*x^8 + 546*x^9 + 9450*x^10 + 157773*x^11 + 2637558*x^12 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 834.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
A001234 := proc(n) abs(combinat[stirling1](n,7)) ; end: seq(A001234(n),n=7..30) ; # R. J. Mathar, Nov 06 2009
-
Table[Abs[StirlingS1[n, 7]], {n, 7, 40}] (* Jean-François Alcover, Mar 24 2020 *)
-
for(n=6,50,print1(polcoeff(prod(i=1,n,x+i),6,x),","))
-
[stirling_number1(i,7) for i in range(7,22)] # Zerinvary Lajos, Jun 27 2008
A163934
Triangle related to the asymptotic expansion of E(x,m=4,n).
Original entry on oeis.org
1, 6, 4, 35, 40, 10, 225, 340, 150, 20, 1624, 2940, 1750, 420, 35, 13132, 27076, 19600, 6440, 980, 56, 118124, 269136, 224490, 90720, 19110, 2016, 84, 1172700, 2894720, 2693250, 1265460, 330750, 48720, 3780, 120
Offset: 1
The first few rows of the triangle are:
1;
6, 4;
35, 40, 10;
225, 340, 150, 20;
-
with(combinat): A163934 := proc(n,m): (-1)^(n+m)* binomial(m+2, 3) *stirling1(n+2, m+2) end: seq(seq(A163934(n,m), m=1..n), n=1..8);
with(combinat): imax:=6; EA:=proc(x,m,n) local E, i; E:=0: for i from m-1 to imax+2 do E:=E + sum((-1)^(m+k+1)*binomial(k,m-1)*n^(k-m+1)* stirling1(i, k), k=m-1..i)/x^(i-m+1) od: E:= exp(-x)/x^(m)*E: return(E); end: EA(x,4,n);
# Maple programs revised by Johannes W. Meijer, Sep 11 2012
-
a[n_, m_] /; n >= 1 && 1 <= m <= n = (-1)^(n+m)*Binomial[m+2, 3] * StirlingS1[n+2, m+2]; Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]] (* Jean-François Alcover, Jun 01 2011, after formula *)
A001706
Generalized Stirling numbers.
Original entry on oeis.org
1, 9, 71, 580, 5104, 48860, 509004, 5753736, 70290936, 924118272, 13020978816, 195869441664, 3134328981120, 53180752331520, 953884282141440, 18037635241029120, 358689683932346880, 7483713725055744000, 163478034254755584000, 3731670622213083648000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
-
Table[-Coefficient[CharacteristicPolynomial[Array[KroneckerDelta[#1,#2]((((#1+3)))-1)+1&,{n,n}],x],x,1],{n,1,10}] (* John M. Campbell, May 24 2011 *)
A001712
Generalized Stirling numbers.
Original entry on oeis.org
1, 12, 119, 1175, 12154, 133938, 1580508, 19978308, 270074016, 3894932448, 59760168192, 972751628160, 16752851775360, 304473528961920, 5825460745532160, 117070467915075840, 2465958106403712000, 54336917746726272000, 1250216389189281024000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Matt Davis, Quadrant Marked Mesh Patterns and the r-Stirling Numbers, arXiv preprint arXiv:1412.0345 [math.CO], 2014.
- Matt Davis, Quadrant Marked Mesh Patterns and the r-Stirling Numbers, J. Int. Seq. 18 (2015), #15.10.1.
- Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.
- Sergey Kitaev and Jeffrey Remmel, Quadrant Marked Mesh Patterns, J. Int. Seq. 15 (2012), #12.4.7.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.]
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49. [Annotated scanned copy]
-
A001712 := proc(n)
add((-1)^(n+k)*binomial(k+2, 2)*3^k*Stirling1(n+2, k+2), k=0..n) ;
end proc:
seq(A001712(n), n=0..10) ; # R. J. Mathar, Jun 09 2018
-
nn = 22; t = Range[0, nn]! CoefficientList[Series[Log[1 - x]^2/(2*(1 - x)^3), {x, 0, nn}], x]; Drop[t, 2] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+2, 2)*3^k*stirling(n+2, k+2, 1)) \\ Michel Marcus, Jan 20 2016
-
b(n) = prod(r=0, n+1, r+3);
c(n) = sum(i=0, n+1, sum(j=i+1, n+1, 1/((3+i)*(3+j))));
for(n=0, 18, print1(b(n)*c(n),",")) \\ Petros Hadjicostas, Jun 11 2020
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
A001717
Generalized Stirling numbers.
Original entry on oeis.org
1, 15, 179, 2070, 24574, 305956, 4028156, 56231712, 832391136, 13051234944, 216374987520, 3785626465920, 69751622298240, 1350747863435520, 27437426560500480, 583506719443584000, 12969079056388224000, 300749419818102528000, 7265204785551331584000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356. [The numbers R_n^m(a,b) are introduced.]
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
-
nn = 20; t = Range[0, nn]! CoefficientList[Series[(1 - 9*Log[1 - x] + 10*Log[1 - x]^2)/(1 - x)^6, {x, 0, nn}], x] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+2, 2)*4^k*stirling(n+2, k+2, 1)); \\ Michel Marcus, Jan 20 2016
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
A001719
Generalized Stirling numbers.
Original entry on oeis.org
1, 30, 625, 11515, 203889, 3602088, 64720340, 1194928020, 22800117076, 450996059800, 9262414989464, 197632289814960, 4381123888865424, 100869322905986496, 2410630110159777216, 59757230054773959552, 1535299458203884231296, 40848249256425236795904
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn = 24; t = Range[0, nn]! CoefficientList[Series[(Log[1 - x]/(1 - x))^4/24, {x, 0, nn}], x]; Drop[t, 4] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+4, 4)*4^k*stirling(n+4, k+4, 1)); \\ Michel Marcus, Jan 20 2016
A001709
Generalized Stirling numbers.
Original entry on oeis.org
1, 27, 511, 8624, 140889, 2310945, 38759930, 671189310, 12061579816, 225525484184, 4392554369840, 89142436976320, 1884434077831824, 41471340993035856, 949385215397800224, 22587683825903611680, 557978742043520648256, 14297219701868137003200
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
-
nn = 25; t = Range[0, nn]! CoefficientList[Series[-Log[1 - x]^5/(120*(1 - x)^2), {x, 0, nn}], x]; Drop[t, 5] (* T. D. Noe, Aug 09 2012 *)
-
a(n) = sum(k=0, n, (-1)^(n+k)*binomial(k+5, 5)*2^k*stirling(n+5, k+5, 1)); \\ Michel Marcus, Jan 01 2023
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
A001708
Generalized Stirling numbers.
Original entry on oeis.org
1, 20, 295, 4025, 54649, 761166, 11028590, 167310220, 2664929476, 44601786944, 784146622896, 14469012689040, 279870212258064, 5667093514231200, 119958395537083104, 2650594302549806976, 61049697873641191296, 1463708634867162093312, 36482312832434713195776
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
-
With[{nn=20},Drop[CoefficientList[Series[Log[1-x]^4/(24(1-x)^2),{x,0,nn}], x]Range[0,nn]!,4]] (* Harvey P. Dale, Oct 24 2011 *)
-
my(x='x+O('x^25)); Vec(serlaplace((log(1-x))^4/(24*(1-x)^2))) \\ Michel Marcus, Feb 04 2022
More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
Comments