A164581
a(n) = 5*a(n - 1) + a(n - 2), with a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 11, 57, 296, 1537, 7981, 41442, 215191, 1117397, 5802176, 30128277, 156443561, 812346082, 4218173971, 21903215937, 113734253656, 590574484217, 3066606674741, 15923607857922, 82684645964351, 429346837679677, 2229418834362736, 11576441009493357
Offset: 0
-
[ n le 2 select (n) else 5*Self(n-1)+Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Sep 12 2013
-
LinearRecurrence[{5, 1}, {1, 2}, 40] (* or *) Rest[CoefficientList[Series [x (1 - 3 x) / (1 - 5 x - x^2), {x, 0, 40}], x]] (* Harvey P. Dale, May 02 2011 *)
-
Vec((1-3*x)/(1-5*x-x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015
A134513
Triangle read by rows: T(n, k) = binomial(ceiling((n+k)/2), floor((n-k)/2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 3, 3, 4, 4, 1, 1, 1, 6, 6, 5, 5, 1, 1, 4, 4, 10, 10, 6, 6, 1, 1, 1, 10, 10, 15, 15, 7, 7, 1, 1, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1, 6, 6, 35, 35, 56, 56, 36, 36, 10, 10, 1, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
1, 3, 3, 1, 1;
3, 3, 4, 4, 1, 1;
1, 6, 6, 5, 5, 1, 1;
4, 4, 10, 10, 6, 6, 1, 1;
1, 10, 10, 15, 15, 7, 7, 1, 1;
...
Better definition, offset changed to 0, and more terms from
Jinyuan Wang, Jan 25 2025
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 2, 6, 5, 1, 1, 5, 12, 6, 1, 2, 3, 14, 17, 8, 1, 3, 7, 14, 24, 26, 9, 1, 2, 12, 27, 30, 45, 33, 11, 1, 1, 9, 45, 62, 70, 66, 45, 12, 1, 2, 5, 44, 111, 147, 120, 104, 54, 14, 1, 3, 11, 39, 128, 273, 273, 217, 140, 69, 15, 1, 2, 18, 65, 139, 366, 546, 518, 329, 200, 80, 17, 1
Offset: 0
First few rows of the triangle are:
1,
2, 1,
3, 3, 1,
2, 6, 5, 1,
1, 5, 12, 6, 1,
2, 3, 14, 17, 8, 1,
3, 7, 14, 24, 26, 9, 1,
...
-
T007318(n, k) = binomial(n, k);
T065941(n, k) = binomial(n - (k+1)\2, k\2);
T049310(n, k) = if ((n+k)%2, 0, (-1)^((n+k)/2 + k) * binomial((n+k)/2, k));
T(n, k) = T007318(n, k) + T065941(n, k) - T049310(n, k); \\ Michel Marcus, Apr 28 2014
The old definition of
A131376 did not match the data, as
Michel Marcus pointed out. The definition there has been corrected, keeping the old data. The present sequence uses the old definition with corrected data from
Michel Marcus. -
N. J. A. Sloane, Aug 09 2019
A123185
Triangular array from a zero coefficient sum of recursive polynomials: p(k, x) = x*p(k - 1, x) + p(k - 2, x).
Original entry on oeis.org
1, -1, 1, 2, -3, 1, -1, 3, -3, 1, 2, -4, 4, -3, 1, -1, 5, -7, 5, -3, 1, 2, -5, 9, -10, 6, -3, 1, -1, 7, -12, 14, -13, 7, -3, 1, 2, -6, 16, -22, 20, -16, 8, -3, 1, -1, 9, -18, 30, -35, 27, -19, 9, -3, 1, 2, -7, 25, -40, 50, -51, 35, -22, 10, -3, 1
Offset: 0
1
-1, 1
2, -3, 1
-1, 3, -3, 1
2, -4, 4, -3, 1
-1, 5, -7, 5, -3, 1
2, -5, 9, -10, 6, -3, 1
-
S:= series((1 - t + (1-2*x)*t^2)/(1 - t*x - t^2), t, 21):
R:= [seq(coeff(S,t,n),n=0..19)]:
seq(seq(coeff(R[n],x,j),j=0..n-1),n=1..20); # Robert Israel, Jul 12 2016
-
p[0, x] = 1; p[1, x] = x - 1; p[2, x] = x^2 - 3x + 2; p[k_, x_] := p[k, x] = x*p[k - 1, x] + p[k - 2, x] ; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]
A290864
Numbers k such that the k-th Fibonacci polynomial evaluated at k is prime.
Original entry on oeis.org
5 is in the sequence because A117715(5,5) = 701 is prime.
-
select(t -> isprime(combinat:-fibonacci(t,t)), [2,seq(seq(6*i+j,j=[1,5]),i=0..100)]); # Robert Israel, Aug 13 2017
-
Select[Range[100], PrimeQ@ Fibonacci[#, #] &] (* Giovanni Resta, Aug 13 2017 *)
A317403
a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).
Original entry on oeis.org
1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Cf.
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A168561,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
-
[(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
-
Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
-
concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
A320508
T(n,k) = binomial(n - k - 1, k), 0 <= k < n, and T(n,n) = (-1)^n, triangle read by rows.
Original entry on oeis.org
1, 1, -1, 1, 0, 1, 1, 1, 0, -1, 1, 2, 0, 0, 1, 1, 3, 1, 0, 0, -1, 1, 4, 3, 0, 0, 0, 1, 1, 5, 6, 1, 0, 0, 0, -1, 1, 6, 10, 4, 0, 0, 0, 0, 1, 1, 7, 15, 10, 1, 0, 0, 0, 0, -1, 1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, -1, 1, 10, 36
Offset: 0
Triangle begins:
1;
1, -1;
1, 0, 1;
1, 1, 0, -1;
1, 2, 0, 0, 1;
1, 3, 1, 0, 0, -1;
1, 4, 3, 0, 0, 0, 1;
1, 5, 6, 1, 0, 0, 0, -1;
1, 6, 10, 4, 0, 0, 0, 0, 1;
1, 7, 15, 10, 1, 0, 0, 0, 0, -1;
1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1;
1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, -1;
...
-
Table[Table[Binomial[n - k - 1, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
create_list(binomial(n - k - 1, k), n, 0, 12, k, 0, n);
A346038
Triangle read by rows T(n, k) such that Fib(n, x+1) = Sum_{k=1..n} T(n, k)*Fib(k, x) where Fib(n, x) is the n-th Fibonacci polynomial.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 0, 3, 3, 1, -2, 2, 6, 4, 1, -4, -3, 7, 10, 5, 1, -3, -12, 0, 16, 15, 6, 1, 5, -18, -21, 11, 30, 21, 7, 1, 20, -4, -50, -24, 35, 50, 28, 8, 1, 29, 48, -51, -98, -9, 78, 77, 36, 9, 1, 1, 124, 45, -164, -150, 42, 147, 112, 45, 10, 1, -94, 128, 282, -67, -365, -177, 154, 250, 156, 55, 11, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 1;
0, 3, 3, 1;
-2, 2, 6, 4, 1;
-4, -3, 7, 10, 5, 1;
...
The first 3 Fibonacci polynomials are 1, x, x^2 + 1. So F3(n, x+1) = x^2 + 2*x + 2 = 1*1 + 2*x + 1*(x^2+1) = 1*F(1,x) + 2*F(2, x) + 1*F(3,x), so the 3rd row is [1, 2, 1].
-
rowV(n) = my(v= if (n==0, [0], n--; vector(n+1, k, k--; if (k%2==0, binomial(n-k/2, k/2))))); Pol(v); \\ A162515
rowT(n, vfp, vfp1) = {my(vp1 = vfp1[n], vc = vector(n), i=n); forstep (k = poldegree(vp1), 0, -1, vc[i] = polcoef(vp1, k)/polcoef(vfp[k+1], k); vp1 -= vfp[k+1]*vc[i]; i--;); vc;}
tabl(nn) = {my(vfp = vector(nn, k, rowV(k))); my(vfp1 = vector(nn, k, subst(vfp[k], x, x+1))); for(n=1, nn, print((rowT(n, vfp, vfp1))););}
A177717
A symmetrical triangle based on the Fibonacci Polynomials: p(x,n)=f(n,x)+x^(n-1)*f(n,1/x).
Original entry on oeis.org
2, 1, 1, 2, 0, 2, 1, 2, 2, 1, 2, 0, 6, 0, 2, 1, 3, 4, 4, 3, 1, 2, 0, 11, 0, 11, 0, 2, 1, 4, 6, 10, 10, 6, 4, 1, 2, 0, 17, 0, 30, 0, 17, 0, 2, 1, 5, 8, 20, 21, 21, 20, 8, 5, 1
Offset: 0
{2},
{1, 1},
{2, 0, 2},
{1, 2, 2, 1},
{2, 0, 6, 0, 2},
{1, 3, 4, 4, 3, 1},
{2, 0, 11, 0, 11, 0, 2},
{1, 4, 6, 10, 10, 6, 4, 1},
{2, 0, 17, 0, 30, 0, 17, 0, 2},
{1, 5, 8, 20, 21, 21, 20, 8, 5, 1}
- Function form used from:http://functions.wolfram.com/HypergeometricFunctions/Fibonacci2General/26/01/02/0001/
-
f[n_, z_] := (1/(2 Sqrt[4 + z^2])) (-HypergeometricPFQ[{}, {}, n ((-I) Pi - \ Log[(1/2) (z + Sqrt[4 + z^2])])] - HypergeometricPFQ[{}, {}, n (I Pi - Log[( 1/2) (z + Sqrt[4 + z^2])])] + 2 HypergeometricPFQ[{}, {}, n Log[(1/ 2) (z + Sqrt[4 + z^2])]]);
Table[CoefficientList[FullSimplify[ExpandAll[f[n, x] + x^(n - 1)*f[n, 1/x]]], x], {n, 1, 10}];
Flatten[%]
Comments