cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A164581 a(n) = 5*a(n - 1) + a(n - 2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 11, 57, 296, 1537, 7981, 41442, 215191, 1117397, 5802176, 30128277, 156443561, 812346082, 4218173971, 21903215937, 113734253656, 590574484217, 3066606674741, 15923607857922, 82684645964351, 429346837679677, 2229418834362736, 11576441009493357
Offset: 0

Views

Author

Vincenzo Librandi, Aug 17 2009

Keywords

Crossrefs

Programs

  • Magma
    [ n le 2 select (n) else 5*Self(n-1)+Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Sep 12 2013
    
  • Mathematica
    LinearRecurrence[{5, 1}, {1, 2}, 40] (* or *) Rest[CoefficientList[Series [x (1 - 3 x) / (1 - 5 x - x^2), {x, 0, 40}], x]] (* Harvey P. Dale, May 02 2011 *)
  • PARI
    Vec((1-3*x)/(1-5*x-x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015

Formula

a(n) = 5*a(n-1)+a(n-2) = A052918(n)-3*A052918(n-1).
G.f.: (1-3*x)/(1-5*x-x^2).
a(n) = A052918(n) + A015449(n). - R. J. Mathar, Jul 06 2012
a(n) = (2^(-1-n)*((5-sqrt(29))^n*(1+sqrt(29))+(-1+sqrt(29))*(5+sqrt(29))^n))/sqrt(29). - Colin Barker, Oct 13 2015
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*5^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*5^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = A052918(n) -3*A052918(n-1). - R. J. Mathar, Feb 14 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) - 7*(-1)^n/a(n)) = 3/10, since 1/(a(n) - 7*(-1)^n/a(n)) = b(n) - b(n+1), where b(n) = (1/5) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 7*(-1)^n/a(n)) = 1/10, since 1/(a(n) - 7*(-1)^n/a(n)) = c(n) + c(n+1), where c(n) = (1/5) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

A134513 Triangle read by rows: T(n, k) = binomial(ceiling((n+k)/2), floor((n-k)/2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 3, 3, 4, 4, 1, 1, 1, 6, 6, 5, 5, 1, 1, 4, 4, 10, 10, 6, 6, 1, 1, 1, 10, 10, 15, 15, 7, 7, 1, 1, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1, 6, 6, 35, 35, 56, 56, 36, 36, 10, 10, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 28 2007

Keywords

Comments

Old name: abs(A049310 * A097806).
Equivalently, T(n,k) = A168561(n,k) + A168561(n,k+1).
Row sums = A062114: (1, 2, 3, 6, 9, 16, 25, 42, 67, ...).
Triangle A046854 = abs(A097806 * A049310).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  1,  1;
  2,  2,  1,  1;
  1,  3,  3,  1,  1;
  3,  3,  4,  4,  1,  1;
  1,  6,  6,  5,  5,  1,  1;
  4,  4, 10, 10,  6,  6,  1,  1;
  1, 10, 10, 15, 15,  7,  7,  1,  1;
  ...
		

Crossrefs

Formula

abs(A049310 * A097806) as infinite lower triangular matrices.

Extensions

Better definition, offset changed to 0, and more terms from Jinyuan Wang, Jan 25 2025

A309213 A007318 + A065941 - A049310.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 2, 6, 5, 1, 1, 5, 12, 6, 1, 2, 3, 14, 17, 8, 1, 3, 7, 14, 24, 26, 9, 1, 2, 12, 27, 30, 45, 33, 11, 1, 1, 9, 45, 62, 70, 66, 45, 12, 1, 2, 5, 44, 111, 147, 120, 104, 54, 14, 1, 3, 11, 39, 128, 273, 273, 217, 140, 69, 15, 1, 2, 18, 65, 139, 366, 546, 518, 329, 200, 80, 17, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 04 2007

Keywords

Comments

Row sums = 1, 3, 7, 14, 25, 45, 85, ... (This is probably a new sequence and should be added to the OEIS.) - N. J. A. Sloane, Aug 09 2019

Examples

			First few rows of the triangle are:
1,
2, 1,
3, 3, 1,
2, 6, 5, 1,
1, 5, 12, 6, 1,
2, 3, 14, 17, 8, 1,
3, 7, 14, 24, 26, 9, 1,
...
		

Crossrefs

Programs

  • PARI
    T007318(n, k) = binomial(n, k);
    T065941(n, k) = binomial(n - (k+1)\2, k\2);
    T049310(n, k) = if ((n+k)%2, 0, (-1)^((n+k)/2 + k) * binomial((n+k)/2, k));
    T(n, k) = T007318(n, k) + T065941(n, k) - T049310(n, k); \\ Michel Marcus, Apr 28 2014

Formula

A007318 + A065941 - A168561 as infinite lower triangular matrices.

Extensions

The old definition of A131376 did not match the data, as Michel Marcus pointed out. The definition there has been corrected, keeping the old data. The present sequence uses the old definition with corrected data from Michel Marcus. - N. J. A. Sloane, Aug 09 2019
More terms from Jinyuan Wang, Aug 29 2019

A123185 Triangular array from a zero coefficient sum of recursive polynomials: p(k, x) = x*p(k - 1, x) + p(k - 2, x).

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -1, 3, -3, 1, 2, -4, 4, -3, 1, -1, 5, -7, 5, -3, 1, 2, -5, 9, -10, 6, -3, 1, -1, 7, -12, 14, -13, 7, -3, 1, 2, -6, 16, -22, 20, -16, 8, -3, 1, -1, 9, -18, 30, -35, 27, -19, 9, -3, 1, 2, -7, 25, -40, 50, -51, 35, -22, 10, -3, 1
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Comments

Except for p(0,x)=1 all sum to zero: Table[Sum[CoefficientList[p[n, x], x][[m]], {m, 1, n + 1}], {n, 0, 12}] {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Examples

			1
-1, 1
2, -3, 1
-1, 3, -3, 1
2, -4, 4, -3, 1
-1, 5, -7, 5, -3, 1
2, -5, 9, -10, 6, -3, 1
		

Crossrefs

Programs

  • Maple
    S:= series((1 - t + (1-2*x)*t^2)/(1 - t*x - t^2), t, 21):
    R:= [seq(coeff(S,t,n),n=0..19)]:
    seq(seq(coeff(R[n],x,j),j=0..n-1),n=1..20); # Robert Israel, Jul 12 2016
  • Mathematica
    p[0, x] = 1; p[1, x] = x - 1; p[2, x] = x^2 - 3x + 2; p[k_, x_] := p[k, x] = x*p[k - 1, x] + p[k - 2, x] ; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

Formula

p(k, x) = x*p(k - 1, x) + p(k - 2, x) for k >= 3 with p(0,x) = 1, p(1,x) = x-1 and p(2,x) = x^2-3x+2. (Corrected by Robert Israel, Jul 12 2016)
G.f.: g(t,x) = (1 - t + (1-2x) t^2)/(1 - t x - t^2). - Robert Israel, Jul 12 2016
For n >= 1, T(n,k) = A114525(n,k) + 2*A114525(n-1,k) - 5*A168561(n-1,k), where we take A114525(n-1,n) = A168561(n-1,n) = 0. - Robert Israel, Jul 13 2016

Extensions

Edited by Robert Israel, Jul 13 2016

A290864 Numbers k such that the k-th Fibonacci polynomial evaluated at k is prime.

Original entry on oeis.org

2, 5, 71, 8419
Offset: 1

Views

Author

Bobby Jacobs, Aug 12 2017

Keywords

Comments

Numbers k such that A084844(k) = A117715(k,k) is prime.
a(5) > 9200. - Giovanni Resta, Aug 13 2017
Except for a(1), all terms == 1 or 5 (mod 6). - Robert Israel, Aug 13 2017

Examples

			5 is in the sequence because A117715(5,5) = 701 is prime.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(combinat:-fibonacci(t,t)), [2,seq(seq(6*i+j,j=[1,5]),i=0..100)]); # Robert Israel, Aug 13 2017
  • Mathematica
    Select[Range[100], PrimeQ@ Fibonacci[#, #] &] (* Giovanni Resta, Aug 13 2017 *)

Extensions

a(4) from Giovanni Resta, Aug 13 2017

A317403 a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).

Original entry on oeis.org

1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1

Views

Author

Rigoberto Florez, Aug 26 2018

Keywords

Comments

Discriminant of Fibonacci polynomials.
Fibonacci polynomials are defined as F(0)=0, F(1)=1 and F(n)=x*F(n-1)+F(n-2) for n>1. Coefficients are given in triangle A168561 with offset 1.

Crossrefs

Programs

  • Magma
    [(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
  • Mathematica
    Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
  • PARI
    concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
    

A320508 T(n,k) = binomial(n - k - 1, k), 0 <= k < n, and T(n,n) = (-1)^n, triangle read by rows.

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 0, -1, 1, 2, 0, 0, 1, 1, 3, 1, 0, 0, -1, 1, 4, 3, 0, 0, 0, 1, 1, 5, 6, 1, 0, 0, 0, -1, 1, 6, 10, 4, 0, 0, 0, 0, 1, 1, 7, 15, 10, 1, 0, 0, 0, 0, -1, 1, 8, 21, 20, 5, 0, 0, 0, 0, 0, 1, 1, 9, 28, 35, 15, 1, 0, 0, 0, 0, 0, -1, 1, 10, 36
Offset: 0

Views

Author

Keywords

Comments

Differs from A164925 in signs.
The n-th row consists of the coefficients in the expansion of (-x)^n + (((1 + sqrt(1 + 4*x))/2)^n -((1 - sqrt(1 + 4*x))/2)^n )/sqrt(1 + 4*x).
The coefficients in the expansion of Sum_{j=0..floor((n - 1)/2)} T(n,k)*x^(n - 2*j - 1) yield the n-th row in A168561, the coefficients of the n-th Fibonacci polynomial.
Row n sums up to Fibonacci(n) + (-1)^n (A008346).

Examples

			Triangle begins:
    1;
    1, -1;
    1,  0,  1;
    1,  1,  0, -1;
    1,  2,  0,  0,  1;
    1,  3,  1,  0,  0, -1;
    1,  4,  3,  0,  0,  0, 1;
    1,  5,  6,  1,  0,  0, 0, -1;
    1,  6, 10,  4,  0,  0, 0,  0, 1;
    1,  7, 15, 10,  1,  0, 0,  0, 0, -1;
    1,  8, 21, 20,  5,  0, 0,  0, 0,  0, 1;
    1,  9, 28, 35, 15,  1, 0,  0, 0,  0, 0, -1;
    ...
		

Crossrefs

Programs

  • Mathematica
    Table[Table[Binomial[n - k - 1, k], {k, 0, n}], {n, 0, 12}]//Flatten
  • Maxima
    create_list(binomial(n - k - 1, k), n, 0, 12, k, 0, n);

Formula

G.f.: 1/((1 + x*y)*(1 - y - x*y^2)).
E.g.f.: exp(-x*y) + (exp(y*(1 + sqrt(1 + 4*x))/2) - exp(y*(1 - sqrt(1 + 4*x))/2))/sqrt(1 + 4*x).
T(n,1) = A023443(n).

A346038 Triangle read by rows T(n, k) such that Fib(n, x+1) = Sum_{k=1..n} T(n, k)*Fib(k, x) where Fib(n, x) is the n-th Fibonacci polynomial.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 3, 3, 1, -2, 2, 6, 4, 1, -4, -3, 7, 10, 5, 1, -3, -12, 0, 16, 15, 6, 1, 5, -18, -21, 11, 30, 21, 7, 1, 20, -4, -50, -24, 35, 50, 28, 8, 1, 29, 48, -51, -98, -9, 78, 77, 36, 9, 1, 1, 124, 45, -164, -150, 42, 147, 112, 45, 10, 1, -94, 128, 282, -67, -365, -177, 154, 250, 156, 55, 11, 1
Offset: 1

Views

Author

Michel Marcus, Jul 02 2021

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   1,  2, 1;
   0,  3, 3,  1;
  -2,  2, 6,  4, 1;
  -4, -3, 7, 10, 5, 1;
  ...
The first 3 Fibonacci polynomials are 1, x, x^2 + 1. So F3(n, x+1) = x^2 + 2*x + 2  = 1*1 + 2*x + 1*(x^2+1) = 1*F(1,x) + 2*F(2, x) + 1*F(3,x), so the 3rd row is [1, 2, 1].
		

Crossrefs

Cf. A000012, A000027, A000217, A005581: diagonals.
Cf. A162515 and A168561 (Fibonacci polynomials coefficients).

Programs

  • PARI
    rowV(n) = my(v= if (n==0, [0], n--; vector(n+1, k, k--; if (k%2==0, binomial(n-k/2, k/2))))); Pol(v); \\ A162515
    rowT(n, vfp, vfp1) = {my(vp1 = vfp1[n], vc = vector(n), i=n); forstep (k = poldegree(vp1), 0, -1, vc[i] = polcoef(vp1, k)/polcoef(vfp[k+1], k); vp1 -= vfp[k+1]*vc[i]; i--;); vc;}
    tabl(nn) = {my(vfp = vector(nn, k, rowV(k))); my(vfp1 = vector(nn, k, subst(vfp[k], x, x+1))); for(n=1, nn, print((rowT(n, vfp, vfp1))););}

A177717 A symmetrical triangle based on the Fibonacci Polynomials: p(x,n)=f(n,x)+x^(n-1)*f(n,1/x).

Original entry on oeis.org

2, 1, 1, 2, 0, 2, 1, 2, 2, 1, 2, 0, 6, 0, 2, 1, 3, 4, 4, 3, 1, 2, 0, 11, 0, 11, 0, 2, 1, 4, 6, 10, 10, 6, 4, 1, 2, 0, 17, 0, 30, 0, 17, 0, 2, 1, 5, 8, 20, 21, 21, 20, 8, 5, 1
Offset: 0

Views

Author

Roger L. Bagula, May 12 2010

Keywords

Comments

Row sums are:
{2, 2, 4, 6, 10, 16, 26, 42, 68, 110,...}

Examples

			{2},
{1, 1},
{2, 0, 2},
{1, 2, 2, 1},
{2, 0, 6, 0, 2},
{1, 3, 4, 4, 3, 1},
{2, 0, 11, 0, 11, 0, 2},
{1, 4, 6, 10, 10, 6, 4, 1},
{2, 0, 17, 0, 30, 0, 17, 0, 2},
{1, 5, 8, 20, 21, 21, 20, 8, 5, 1}
		

References

  • Function form used from:http://functions.wolfram.com/HypergeometricFunctions/Fibonacci2General/26/01/02/0001/

Crossrefs

Programs

  • Mathematica
    f[n_, z_] := (1/(2 Sqrt[4 + z^2])) (-HypergeometricPFQ[{}, {}, n ((-I) Pi - \ Log[(1/2) (z + Sqrt[4 + z^2])])] - HypergeometricPFQ[{}, {}, n (I Pi - Log[( 1/2) (z + Sqrt[4 + z^2])])] + 2 HypergeometricPFQ[{}, {}, n Log[(1/ 2) (z + Sqrt[4 + z^2])]]);
    Table[CoefficientList[FullSimplify[ExpandAll[f[n, x] + x^(n - 1)*f[n, 1/x]]], x], {n, 1, 10}];
    Flatten[%]

Formula

f(x,n)=(1/(2 Sqrt[4 + z^2])) (-HypergeometricPFQ[{}, {}, n ((-I) Pi - Log[(1/2) (z + \ Sqrt[4 + z^2])])] - HypergeometricPFQ[{}, {}, n (I Pi - Log[(1/2) (z + Sqrt[ 4 + z^2])])] + 2 HypergeometricPFQ[{}, {}, n Log[(1/2) (z + Sqrt[4 + z^2])]]);
p(x,n)=f(x,n)+x^(n-1)*f(1/x,n);
t(n,m)=coefficients(p(x,n))
Previous Showing 21-29 of 29 results.