cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 74 results. Next

A204097 Numbers that are 6-persistent but not 7-persistent.

Original entry on oeis.org

36492195078, 48602175913, 48613021759, 49021758613, 49130217586, 49219635078, 53829197460, 53829301746, 53928301746, 54601738293, 54601739283, 58829301746, 59288301746, 60174538293, 60174539283, 60174588293, 60174592883, 64820935179
Offset: 1

Views

Author

Hans Havermann, Jan 10 2012

Keywords

Comments

A number n is k-persistent iff all of {n, 2n,..., kn} are pandigital (in the sense of A171102).

References

  • Ross Honsberger, More Mathematical Morsels, Mathematical Association of America, 1991, pages 15-18.

Crossrefs

Cf. A171102 (pandigital), A051264 (1-persistent), A051018 (2-persistent), A051019 (3-persistent), A051020 (4-persistent), A204096 (5-persistent), A204047 (smallest n-persistent).

A061604 Smallest multiple of n containing all 10 digits from 0 to 9.

Original entry on oeis.org

1023456789, 1023456798, 1023456789, 1023457896, 1023467895, 1023456798, 1023456798, 1023457896, 1023456789, 1234567890, 1024375869, 1023457896, 1023456798, 1023456798, 1023467895, 1023457968, 1023457698, 1023456798
Offset: 1

Views

Author

Amarnath Murthy, May 19 2001

Keywords

Comments

It can be shown that for every positive integer there exist infinitely many multiples containing all the 10 digits.

Crossrefs

Cf. A171102.

Programs

  • Mathematica
    With[{t=Sort[FromDigits[Join[{1},#]]&/@Permutations[{2,3,4,5,6,7,8,9,0}]]}, Flatten[ Table[Select[t,Divisible[#,n]&,1],{n,20}]]] (* Harvey P. Dale, Aug 26 2014 *)

Extensions

Corrected and extended by Patrick De Geest, Jun 04 2001

A090493 Least k such that n^k contains all the digits from 0 through 9, or 0 if no such k exists.

Original entry on oeis.org

0, 68, 39, 34, 19, 20, 18, 28, 24, 0, 23, 22, 22, 21, 12, 17, 14, 21, 17, 51, 17, 18, 14, 19, 11, 18, 13, 11, 12, 39, 11, 14, 16, 14, 19, 10, 13, 14, 17, 34, 11, 17, 13, 16, 15, 11, 12, 12, 9, 18, 16, 11, 13, 10, 12, 7, 13, 11, 11, 20, 14, 18, 13, 14, 10, 13, 10, 9, 11, 18, 15
Offset: 1

Views

Author

Amarnath Murthy, Dec 03 2003

Keywords

Comments

Note that the values of n for which a(n) = 1 have density 1.
Is it known that a(n)=0 only for n a power of 10? - Christopher J. Smyth, Aug 21 2014
a(n) >= ceiling(log_n(10)*9), whenever a(n)>0. This is because in order for an integer to have 10 digits its base-10 magnitude must be at least 9. - Ely Golden, Sep 06 2017

Examples

			a(5)=19: 5^19 = 19073486328125.
		

Crossrefs

Exponents of powers of k that contain all ten decimal digits: A130694 (k=2), A236673 (k=3), A284670 (k=5), A284672 (k=7).

Programs

  • Maple
    a:= proc(n) local k;
       if n = 10^ilog10(n) then return 0 fi;
       for k from 1 do
         if nops(convert(convert(n^k,base,10),set))=10 then return k fi
       od
    end proc:
    seq(a(n),n=1..100); # Robert Israel, Aug 20 2014
  • Mathematica
    Table[If[IntegerQ@ Log10[n], 0, SelectFirst[Range[#, # + 100] &@ Ceiling[9 Log[n, 10]], NoneTrue[DigitCount[n^#], # == 0 &] &]], {n, 71}] (* Michael De Vlieger, Sep 06 2017 *)
  • PARI
    a(n) = if (n == 10^valuation(n, 10), return (0)); k=1; while(#vecsort(digits(n^k),,8)!=10, k++); k; \\ Michel Marcus, Aug 20 2014
    
  • Python
    def a(n):
      s = str(n)
      if n == 1 or (s.count('0')==len(s)-1 and s.startswith('1')):
        return 0
      k = 1
      count = 0
      while count != 10:
        count = 0
        for i in range(10):
          if str(n**k).count(str(i)) == 0:
            count += 1
            break
        if count:
          k += 1
        else:
          return k
    n = 1
    while n < 100:
      print(a(n), end=', ')
      n += 1
    # Derek Orr, Aug 20 2014

Formula

a(10^e) = 0; a(m^e) = a(m)/e for e dividing a(m). - Reinhard Zumkeller, Dec 06 2004

Extensions

More terms from Reinhard Zumkeller, Dec 06 2004
Corrected a(15), a(17), a(38), a(48), a(56) and a(65). (For each of these terms, the only 1 in n^k is the first digit.) - Jon E. Schoenfield, Sep 20 2008

A215876 Numbers that contain each decimal digit at least twice.

Original entry on oeis.org

10012233445566778899, 10012233445566778989, 10012233445566778998, 10012233445566779889, 10012233445566779898, 10012233445566779988, 10012233445566787899, 10012233445566787989, 10012233445566787998, 10012233445566788799
Offset: 1

Views

Author

M. F. Hasler, Aug 25 2012

Keywords

Comments

A subsequence of A171102. Contains A000079 o A215830, i.e., { 2^A215830(n); n=1,2,3... }, as a subsequence.
The first 17!/2^8 ~ 1.4e12 terms are of the form 10^19 + x, where x runs over all permutations of the digits 12233445566788799, up to 99887766554433221.

Programs

  • Maple
    nextp:= proc(L) local m, i,j, r, rj;
    for m from 2 while L[m-1] <= L[m] do od:
    r:= 10:
    for j from 1 to m-1 do
       if L[j] > L[m] and L[j] < r then
          r:= L[j]; rj:= j;
       fi
    od;
    [ op(sort([seq(L[i],i={$1..m} minus {rj})],`>`)), r,seq(L[i],i=m+1..nops(L))]
    end proc:
    A[1]:= 10012233445566778899:
    L:= convert(A[1],base,10):
    for n from 2 to 100 do
      L:= nextp(L);
      A[n]:= add(L[i]*10^(i-1),i=1..nops(L));
    od:
    seq(A[i],i=1..100); # Robert Israel, Feb 25 2019
  • PARI
    is_A215876(N)={my(c=vector(10)); for(k=1,#N=Vecsmall(Str(N)), c[N[k]-47]++); vecmin(c)>1}

A230959 If n is pandigital then 0 else (digits not occurring in decimal representation of n, arranged in decreasing order).

Original entry on oeis.org

987654321, 987654320, 987654310, 987654210, 987653210, 987643210, 987543210, 986543210, 976543210, 876543210, 98765432, 987654320, 98765430, 98765420, 98765320, 98764320, 98754320, 98654320, 97654320, 87654320, 98765431, 98765430, 987654310, 98765410
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 02 2013

Keywords

Comments

a(0) > a(n) for n > 0;
a(A171102(n)) = 0 by definition, but also a(A050289(n)) = 0.

Crossrefs

Cf. A227362.

Programs

  • Haskell
    import Data.List ((\\))
    a230959 n = (if null cds then 0 else read cds) :: Integer
       where cds = "9876543210" \\ show n
    
  • Mathematica
    pd[n_]:=Module[{idn=Sort[IntegerDigits[n]]},If[idn==Range[0,9],0,FromDigits[ Reverse[ Complement[ Range[ 0,9],idn]]]]]; Table[pd[n],{n,0,30}] (* Harvey P. Dale, Nov 16 2023 *)
  • Python
    def A230959(n): return int(''.join(sorted(set('9876543210')-set(str(n)),reverse=True)) or 0) # Chai Wah Wu, Nov 23 2022

A062518 Conjectural largest exponent k such that n^k does not contain all of the digits 0 through 9 (in decimal notation) or 0 if no such k exists (for example if n is a power of 10).

Original entry on oeis.org

0, 168, 106, 84, 65, 64, 61, 56, 53, 0, 41, 51, 37, 34, 34, 42, 27, 25, 44, 168, 29, 24, 50, 23, 29, 31, 28, 28, 45, 106, 28, 18, 24, 34, 18, 32, 25, 17, 41, 84, 23, 19, 20, 29, 39, 32, 15, 29, 16, 65, 29, 29, 30, 18, 17, 33, 19, 31, 27, 64, 26, 19, 24, 28, 17, 15, 21, 25, 13
Offset: 1

Views

Author

Robert G. Wilson v, Jun 24 2001

Keywords

Comments

I do not know how many of these terms have been proved to be correct. - N. J. A. Sloane
In particular, are the powers of 10 the only n with a(n) = 0?
Note that a(10n) = a(n) unless n^a(n) contains no 0 (i.e., a(n) = A020665(n)), in which case a(10n) < a(n). - Christopher J. Smyth, Aug 20 2014
From Robert G. Wilson v, Aug 22 2021: (Start)
Conjectured first occurrence of k for k >= 0: 1, 156224, 22148, 7342, 3376, 861, 609, 477, 295, 152, 153, 149, 138, 69, 139, 47, 49, 38, 32, 42, 43, 67, 92, 24, 22, 18, 61, 17, 27, 21, 53, 26, 36, 56, 14, 190, 271, 13, 110, 45, ?40?, 11, 16, ?43?, 19, 29, ..., .
Other integers which satisfy a(n) = 0 are 1023458769, 1023458967, 1023467895, 1023469875, 1023475986, 1023478695, .... These are all members of A171102.
(End)

Examples

			a(11) = 41 as 11^41 = 4978518112499354698647829163838661251242411 is the conjectural highest power of 11 not containing all ten digits.
a(110) = 38 as 110^38 does not contain the digit 2, while, conjecturally, all higher powers of 110 contain all ten digits. - _Christopher J. Smyth_, Aug 20 2014
		

Crossrefs

Formula

a(n^e) <= a(n)/e. - Robert G. Wilson v, Oct 02 2021

Extensions

Definition corrected by Christopher J. Smyth, Aug 20 2014.

A219743 Number for which the number of distinct base 10 digits is 8.

Original entry on oeis.org

10234567, 10234568, 10234569, 10234576, 10234578, 10234579, 10234586, 10234587, 10234589, 10234596, 10234597, 10234598, 10234657, 10234658, 10234659, 10234675, 10234678, 10234679, 10234685, 10234687, 10234689, 10234695, 10234697, 10234698
Offset: 1

Views

Author

Jonathan Vos Post, Dec 05 2012

Keywords

Crossrefs

Cf. A010785 (1 digits), A031955 (2 digits), A031962 (3 digits), A031969 (4 digits), A031987 (5 digits), A220076 (6 digits), A218019 (7 digits), A116670 (9 digits), A171102 (10 digits).

Programs

  • Mathematica
    Select[Range[10^7, 10^7 + 1000000], Length[Union[IntegerDigits[#]]] == 8 &] (* T. D. Noe, Dec 05 2012 *)

Extensions

Corrected and extended by T. D. Noe, Dec 05 2012

A257664 a(1)=1; a(n+1) is the smallest positive integer not yet used where the digits of the decimal expansion (disregarding all leading and trailing zeros) of a(n)/a(n+1) have no digit in common with either a(n) or a(n+1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 11, 15, 25, 22, 20, 24, 27, 9, 12, 16, 32, 33, 30, 40, 18, 36, 44, 37, 45, 50, 60, 48, 64, 72, 54, 55, 66, 73, 77, 7, 14, 21, 28, 42, 70, 35, 75, 82, 110, 41, 108, 111, 125, 132, 135, 150, 225, 202, 220, 200, 240, 80, 120, 128, 192, 216, 243, 270
Offset: 1

Views

Author

Eric Angelini and Hans Havermann, Jul 12 2015

Keywords

Comments

Positive powers of ten (A011557) and pandigital numbers (A050289 and A171102) will never appear.
Is the sequence finite?

Examples

			a(2) is 2 because it is the smallest number not yet used where the digits of a(1)/a(2) = .5, i.e., 5, is neither 1 nor 2.
a(3) is 3 because it is the smallest number not yet used where the digits of a(2)/a(3) = .666.., i.e., 6, is neither 2 nor 3.
a(4) is 4 because it is the smallest number not yet used where the digits of a(3)/a(4) = .75, i.e., 5 and 7, are neither 3 nor 4.
a(72) is 63 because it is the smallest number not yet used where the digits of a(71)/a(72) = 90/63 = 1.42857142857.., i.e., 1, 2, 4, 5, 7, and 8, are not any of 0, 3, 6, or 9.
a(376) is 15000 because it is the smallest number not yet used where the digits of a(375)/a(376) = 1025/15000 = .068333.., i.e., 3, 6, and 8 (the zero is leading) are not any of 0, 1, 2, or 5.
		

Programs

  • Mathematica
    t = 1; s = {1}; Do[c = 1; d = IntegerDigits[t]; While[Intersection[Flatten[RealDigits[t/c][[1]]], Join[IntegerDigits[c], d]] != {} || MemberQ[s, c], c++]; t = c; AppendTo[s, t], {400}]; s

A232897 Number of nonnegative integers not exceeding n which have no decimal digits occurring in n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 16, 8, 18, 16, 16, 16, 16, 16, 16, 16, 24, 16, 16, 27, 24, 24, 24, 24, 24, 24, 32, 24, 24, 24, 36, 32, 32, 32, 32, 32, 40, 32, 32, 32, 32, 45, 40, 40, 40, 40, 48, 40, 40, 40, 40, 40, 54, 48, 48, 48, 56
Offset: 0

Views

Author

Vladimir Shevelev, Dec 02 2013

Keywords

Comments

A "digit analog" of Euler function phi(n).
n = 123456789 is the smallest n>1 for which a(n)=1; n = 1023456789 is the smallest n>0 for which a(n) = 0. - Peter J. C. Moses, Dec 02 2013
If n > 0, a(n) = 0 if and only if n is in A171102; consequently a(n) = 0 for almost all n. - Charles R Greathouse IV, Dec 02 2013
Indeed, for any k, there exists N = N(k), such that all numbers >= N contain at least k digits. The "part" of them which do not contain, say, digit "1",<= (0.9)^k, so the "part" of them which do not contain at least one digit <= 10*(0.9)^k. This does not exceed any epsilon>0 for a choice of sufficiently large k=k(epsilon). Thus almost all positive numbers are pandigital (in the sense of A171102). - Vladimir Shevelev, Dec 03 2013

Programs

  • PARI
    a(n)=if(n<9,return(n)); my(d=Set(digits(n))); sum(k=1,n-1, #setintersect(d, Set(digits(k)))==0)+(d[1]>0) \\ Charles R Greathouse IV, Dec 02 2013

Extensions

More terms from Peter J. C. Moses, Dec 02 2013

A253172 Numbers n = p * q, where n, p, and q together contain all 10 digits at least once.

Original entry on oeis.org

15628, 15678, 16038, 17082, 17820, 19084, 20457, 20748, 20754, 21658, 24507, 24587, 25704, 26910, 26970, 27096, 27504, 27690, 28156, 28651, 29076, 29370, 29670, 29706, 29730, 30956, 30972, 30976, 32890, 32970, 34056, 34902, 34986, 35046, 35074, 35096, 35496, 35690, 36092, 36490, 36508, 36950, 36970, 36972, 37092, 37096, 37290, 37590, 37690, 37908, 38870, 39026, 39720, 39760, 40587, 40596
Offset: 1

Views

Author

Randy L. Ekl, Dec 28 2014

Keywords

Comments

All pandigital numbers (cf. A171102) belong to this sequence; therefore A050288(1) = 10123457689 is the smallest prime term. - Reinhard Zumkeller, Dec 29 2014

Examples

			a(1) is 15628 = 4 * 3907, using all 10 digits.
a(8) is 20748 = 13 * 1596 (note duplicate 1, which is ok in this sequence).
a(3) is 16038 = 27 * 594, and also 16038 = 54 * 297; two different solutions for a(3).
		

Crossrefs

Cf. A195814, which restricts sequence terms along with their factors to exactly 10 digits, and thus has a finite number of terms.
Cf. A027750, subsequences: A050278, A171102, A050288.

Programs

  • Haskell
    import Data.List (nub, sort)
    a253172 n = a253172_list !! (n-1)
    a253172_list = filter f [2..] where
       f x = g divs $ reverse divs where
             g (d:ds) (q:qs) = d <= q &&
               (sort (nub $ xs ++ show d ++ show q) == decs || g ds qs)
             xs = show x
             divs = a027750_row x
       decs = "0123456789"
    -- Reinhard Zumkeller, Dec 29 2014
  • PARI
    isokpq(n) = {fordiv(n, d, digs = digits(n); if ( d <= sqrtint(n), digs = concat(digs, digits(d)); digs = concat(digs, digits(n/d)); if (#Set(digs) == 10, return(1));););}
    lista(nn) = {for(n=2, nn, if (isokpq(n), print1(n, ", ")););} \\ Michel Marcus, Dec 29 2014
    
Previous Showing 21-30 of 74 results. Next