cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A207500 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 102, 81, 14, 18, 169, 283, 297, 196, 22, 25, 324, 699, 1004, 932, 484, 35, 34, 625, 1526, 2942, 3939, 2974, 1225, 56, 46, 1156, 3355, 7305, 14253, 15495, 9723, 3136, 90, 62, 2116, 6888, 17911, 41938, 68745, 62530, 32164
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Table starts
..2....4.....6......9......13......18.......25........34........46.........62
..4...16....36.....81.....169.....324......625......1156......2116.......3844
..6...36...102....283.....699....1526.....3355......6888.....13954......27816
..9...81...297...1004....2942....7305....17911.....40262.....87990.....187012
.14..196...932...3939...14253...41938...122061....319798....813724....2009628
.22..484..2974..15495...68745..237576...804887...2408502...6896518...18962878
.35.1225..9723..62530..343310.1413961..5715255..20090516..67370124..216796950
.56.3136.32164.253747.1714707.8384076.40046975.163471950.628620128.2300337450

Examples

			Some solutions for n=4 k=3
..1..0..0....1..0..0....1..1..1....0..1..0....0..1..0....0..1..0....0..0..1
..0..0..1....1..0..1....1..1..1....0..1..0....0..0..1....1..1..0....1..1..1
..1..0..0....1..0..0....1..1..1....0..1..0....0..1..0....1..1..0....0..0..1
..1..0..1....0..0..1....1..1..1....0..1..0....0..0..1....1..0..0....1..1..0
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A171861(n+1)
Row 2 is A207025
Row 3 is A207243

A207682 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 72, 81, 13, 19, 169, 164, 166, 169, 18, 28, 361, 336, 436, 360, 324, 25, 41, 784, 702, 964, 1030, 660, 625, 34, 60, 1681, 1488, 2132, 2310, 2032, 1292, 1156, 46, 88, 3600, 3164, 4846, 5704, 4728, 4174, 2400, 2116, 62, 129
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2....4....6....9....13....19.....28.....41.....60......88.....129......189
..4...16...36...81...169...361....784...1681...3600....7744...16641....35721
..6...36...72..164...336...702...1488...3164...6612...13916...29532....62032
..9...81..166..436...964..2132...4846..11301..25496...57407..131250...299913
.13..169..360.1030..2310..5704..14090..34245..81936..201951..490844..1183972
.18..324..660.2032..4728.11994..29982..77141.193184..485658.1213580..3090430
.25..625.1292.4174..9450.25076..65564.171382.433468.1150747.2968284..7722348
.34.1156.2400.8266.18940.52632.139730.379618.990368.2737864.7139792.19521802

Examples

			Some solutions for n=4 k=3
..1..0..0....1..0..0....1..1..1....1..0..0....1..0..0....1..0..0....0..1..0
..1..1..1....0..1..1....1..1..0....0..1..0....1..1..0....1..1..1....1..0..0
..0..1..1....0..0..1....0..0..1....1..1..0....0..1..0....0..1..0....0..1..0
..1..0..0....0..1..0....1..1..0....1..0..0....1..0..0....0..0..1....1..1..0
		

Crossrefs

Column 1 is A171861(n+1)
Column 2 is A207025
Column 3 is A207509
Row 1 is A000930(n+3)
Row 2 is A207170

A207693 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 60, 81, 13, 25, 225, 100, 144, 169, 18, 40, 625, 240, 256, 312, 324, 25, 64, 1600, 576, 768, 576, 612, 625, 34, 104, 4096, 1296, 2304, 1872, 1156, 1250, 1156, 46, 169, 10816, 2916, 5856, 6084, 4216, 2500, 2516, 2116, 62, 273
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2....4....6....9....15.....25.....40......64.....104......169.......273
..4...16...36...81...225....625...1600....4096...10816....28561.....74529
..6...36...60..100...240....576...1296....2916....6804....15876.....36288
..9...81..144..256...768...2304...5856...14884...42700...122500....320600
.13..169..312..576..1872...6084..18564...56644..177548...556516...1724752
.18..324..612.1156..4216..15376..50096..163216..578528..2050624...6804864
.25..625.1250.2500.10000..40000.145200..527076.2056032..8020224..29854944
.34.1156.2516.5476.24420.108900.453420.1887876.8263236.36168196.155101060

Examples

			Some solutions for n=4 k=3
..1..1..1....1..0..0....1..0..1....1..1..0....0..1..1....0..1..1....1..1..1
..1..1..0....0..0..1....0..1..1....0..0..1....1..0..1....1..1..0....0..0..1
..0..0..1....1..0..1....1..1..0....1..0..1....1..1..0....1..0..1....1..1..0
..1..0..1....1..0..0....1..0..0....1..0..0....0..0..1....0..1..1....0..1..1
		

Crossrefs

Column 1 is A171861(n+1)
Column 2 is A207025
Column 3 is A207584
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)

A207908 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 0 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 102, 81, 13, 25, 225, 289, 261, 169, 18, 40, 625, 1071, 841, 611, 324, 25, 64, 1600, 3969, 4089, 2209, 1278, 625, 34, 104, 4096, 13230, 19881, 13865, 5041, 2625, 1156, 46, 169, 10816, 44100, 80511, 87025, 39831, 11025
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2....4....6.....9.....15......25.......40........64........104.........169
..4...16...36....81....225.....625.....1600......4096......10816.......28561
..6...36..102...289...1071....3969....13230.....44100.....153090......531441
..9...81..261...841...4089...19881....80511....326041....1428071.....6255001
.13..169..611..2209..13865...87025...417425...2002225...10896915....59305401
.18..324.1278..5041..39831..314721..1726758...9474084...62431074...411400089
.25..625.2625.11025.110775.1113025..6835345..41977441..336253621..2693506201
.34.1156.5134.22801.289467.3674889.24832818.167806116.1627138986.15777620881

Examples

			Some solutions for n=4 k=3
..0..1..1....1..0..0....1..0..0....0..0..1....0..0..1....0..1..1....0..0..1
..1..1..0....0..0..1....0..1..1....1..0..0....1..0..1....1..1..0....1..1..1
..0..1..1....1..1..0....1..0..0....0..1..1....0..1..1....0..0..1....0..0..1
..1..0..0....0..0..1....0..0..1....1..0..0....0..0..1....1..0..0....1..0..0
		

Crossrefs

Column 1 is A171861(n+1)
Column 2 is A207025
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207704

A070550 a(n) = a(n-1) + a(n-3) + a(n-4), starting with a(0..3) = 1, 2, 2, 3.

Original entry on oeis.org

1, 2, 2, 3, 6, 10, 15, 24, 40, 65, 104, 168, 273, 442, 714, 1155, 1870, 3026, 4895, 7920, 12816, 20737, 33552, 54288, 87841, 142130, 229970, 372099, 602070, 974170, 1576239, 2550408, 4126648, 6677057, 10803704, 17480760, 28284465, 45765226
Offset: 0

Views

Author

Sreyas Srinivasan (sreyas_srinivasan(AT)hotmail.com), May 02 2002

Keywords

Comments

Shares some properties with Fibonacci sequence.
The sum of any two alternating terms (terms separated by one other term) produces a Fibonacci number (e.g., 2+6=8, 3+10=13, 24+65=89). The product of any two consecutive or alternating Fibonacci terms produces a term from this sequence (e.g., 5*8 = 40, 13*5 = 65, 21*8 = 168).
In Penney's game (see A171861), the number of ways that HTH beats HHH on flip 3,4,5,... - Ed Pegg Jr, Dec 02 2010
The Ca2 sums (see A180662 for the definition of these sums) of triangle A035607 equal the terms of this sequence. - Johannes W. Meijer, Aug 05 2011

Examples

			G.f.: 1 + 2*x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 24*x^7 + ...
		

Crossrefs

Bisections: A001654, A059929.

Programs

  • Haskell
    a070550 n = a070550_list !! n
    a070550_list = 1 : 2 : 2 : 3 :
       zipWith (+) a070550_list
                   (zipWith (+) (tail a070550_list) (drop 3 a070550_list))
    -- Reinhard Zumkeller, Aug 06 2011
    
  • Maple
    with(combinat): A070550 := proc(n): fibonacci(floor(n/2)+1) * fibonacci(ceil(n/2)+2) end: seq(A070550(n),n=0..37); # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    LinearRecurrence[{1, 0, 1, 1}, {1, 2, 2, 3}, 40] (* Jean-François Alcover, Jan 27 2018 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,a+b+d}; NestList[nxt,{1,2,2,3},40][[;;,1]] (* Harvey P. Dale, Jul 16 2024 *)
  • PARI
    A070550(n) = fibonacci(n\2+1)*fibonacci((n+5)\2) \\ M. F. Hasler, Aug 06 2011
    
  • PARI
    x='x+O('x^100); Vec((1+x)/(1-x-x^3-x^4)) \\ Altug Alkan, Dec 24 2015

Formula

a(n) = F(floor(n/2)+1)*F(ceiling(n/2)+2), with F(n) = A000045(n). - Ralf Stephan, Apr 14 2004
G.f.: (1+x)/(1-x-x^3-x^4) = (1+x)/((1+x^2)*(1-x-x^2))
a(n) = A126116(n+4) - F(n+3). - Johannes W. Meijer, Aug 05 2011
a(n) = (1+3*i)/10*(-i)^n + (1-3*i)/10*(i)^n + (2+sqrt(5))/5*((1+sqrt(5))/2)^n + (2-sqrt(5))/5*((1-sqrt(5))/2)^n, where i = sqrt(-1). - Sergei N. Gladkovskii, Jul 16 2013
a(n+1)*a(n+3) = a(n)*a(n+2) + a(n+1)*a(n+2) for all n in Z. - Michael Somos, Jan 19 2014
Sum_{n>=1} 1/a(n) = A290565. - Amiram Eldar, Feb 17 2021

A207785 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 98, 81, 13, 18, 169, 257, 253, 169, 19, 25, 324, 611, 791, 621, 361, 28, 34, 625, 1326, 2173, 2200, 1575, 784, 41, 46, 1156, 2815, 5241, 6766, 6418, 4000, 1681, 60, 62, 2116, 5718, 12567, 17763, 22322, 19041, 10057, 3600, 88, 83
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Table starts
..2....4.....6.....9.....13.....18......25......34.......46.......62........83
..4...16....36....81....169....324.....625....1156.....2116.....3844......6889
..6...36....98...257....611...1326....2815....5718....11362....22164.....42507
..9...81...253...791...2173...5241...12567...28101....61397...131083....272789
.13..169...621..2200...6766..17763...46199..110732...257118...582114...1274558
.19..361..1575..6418..22322..65094..185613..486006..1224264..2997835...7098270
.28..784..4000.19041..75557.246087..786907.2283773..6379507.17308075..45325727
.41.1681.10057.55101.246840.887406.3121285.9855231.29800935.87179997.244806537

Examples

			Some solutions for n=4 k=3
..1..1..0....1..1..1....1..1..1....1..1..0....1..0..0....0..0..1....0..0..1
..0..0..1....1..1..1....1..1..0....0..0..1....1..0..1....0..0..1....0..1..0
..0..0..1....0..1..0....1..0..0....0..0..1....1..1..1....1..1..1....1..0..0
..1..1..0....0..1..0....1..0..1....1..1..1....1..0..1....1..0..0....1..0..1
		

Crossrefs

Column 1 is A000930(n+3)
Column 2 is A207170
Column 3 is A203084(n-2)
Row 1 is A171861(n+1)
Row 2 is A207025
Row 3 is A202371(n-2)

A208420 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 102, 81, 13, 26, 256, 378, 261, 169, 18, 42, 676, 1260, 1269, 611, 324, 25, 68, 1764, 4374, 5139, 3835, 1278, 625, 34, 110, 4624, 14946, 22509, 18395, 10098, 2625, 1156, 46, 178, 12100, 51384, 95265, 100113, 55404, 26375
Offset: 1

Views

Author

R. H. Hardin Feb 26 2012

Keywords

Comments

Table starts
..2....4....6....10.....16......26.......42........68........110.........178
..4...16...36...100....256.....676.....1764......4624......12100.......31684
..6...36..102...378...1260....4374....14946.....51384.....176238......605022
..9...81..261..1269...5139...22509....95265....409239....1746639.....7475751
.13..169..611..3835..18395..100113...512525...2702193...14044303....73505289
.18..324.1278.10098..55404..365094..2187162..13759164...84389022...524422458
.25..625.2625.26375.161975.1297475..8948825..67061525..479579725..3521095775
.34.1156.5134.65178.440436.4270706.33334858.295643872.2428615750.20882937190

Examples

			Some solutions for n=4 k=3
..1..0..1....1..0..0....1..1..1....1..1..1....1..1..0....0..1..0....0..1..0
..1..0..0....0..1..1....1..1..0....1..1..1....0..1..0....0..1..1....0..1..1
..0..1..1....1..0..0....1..0..1....1..1..1....1..0..1....1..1..0....1..0..0
..1..0..0....0..1..1....1..1..0....1..1..1....0..1..0....0..1..0....0..1..0
		

Crossrefs

Column 1 is A171861(n+1)
Column 2 is A207025
Column 3 is A207903
Row 1 is A006355(n+2)
Row 2 is A206981
Row 3 is A060521

A207514 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 72, 81, 13, 18, 169, 166, 166, 169, 18, 25, 324, 360, 438, 360, 324, 25, 34, 625, 660, 1042, 1042, 660, 625, 34, 46, 1156, 1292, 1992, 2638, 1992, 1292, 1156, 46, 62, 2116, 2400, 4168, 5334, 5334, 4168, 2400, 2116, 62, 83, 3844
Offset: 1

Views

Author

R. H. Hardin Feb 18 2012

Keywords

Comments

Table starts
..2....4....6....9....13....18.....25.....34.....46.....62......83.....111
..4...16...36...81...169...324....625...1156...2116...3844....6889...12321
..6...36...72..166...360...660...1292...2400...4396...8096...14580...26346
..9...81..166..438..1042..1992...4168...8174..15881..30801...58335..111083
.13..169..360.1042..2638..5334..11465..23663..47894..96640..191362..379376
.18..324..660.1992..5334.10340..22960..46826..94601.192192..375592..746568
.25..625.1292.4168.11465.22960..50322.105370.214519.434467..859485.1700263
.34.1156.2400.8174.23663.46826.105370.221672.455400.933158.1848347.3679944

Examples

			Some solutions for n=4 k=3
..0..1..0....1..1..0....0..0..1....0..0..1....0..1..0....0..1..0....1..1..1
..0..0..1....1..0..0....1..0..0....0..1..0....0..0..1....1..1..1....1..0..1
..0..1..0....0..1..0....1..0..1....0..0..1....0..1..0....1..0..0....0..1..0
..0..1..0....1..0..0....0..0..1....0..1..0....0..0..1....0..0..1....0..1..0
		

Crossrefs

Column 1 is A171861(n+1)
Column 2 is A207025

A164315 Number of binary strings of length n with no substrings equal to 000 or 011.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 18, 25, 34, 46, 62, 83, 111, 148, 197, 262, 348, 462, 613, 813, 1078, 1429, 1894, 2510, 3326, 4407, 5839, 7736, 10249, 13578, 17988, 23830, 31569, 41821, 55402, 73393, 97226, 128798, 170622, 226027, 299423, 396652, 525453, 696078, 922108
Offset: 0

Views

Author

R. H. Hardin, Aug 12 2009

Keywords

Examples

			All solutions for N=6
001001 001010 010010 010100 010101 100100 100101 101001 101010 110010
110100 110101 111001 111010 111100 111101 111110 111111
		

Crossrefs

Cf. A171861 (essentially the same sequence).

Programs

  • Mathematica
    CoefficientList[Series[(x^2 + x + 1)/((x - 1) (x^3 + x^2 - 1)), {x, 0, 44}], x] (* Michael De Vlieger, Oct 11 2017 *)

Formula

G.f.: (x^2+x+1)/((x-1)*(x^3+x^2-1)). - R. J. Mathar, Nov 28 2011

Extensions

Edited by Alois P. Heinz, Oct 11 2017

A238644 Number of binary words on {H,T} that end in THTH but do not contain the contiguous subsequence HTHH.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 6, 11, 19, 34, 62, 112, 202, 365, 659, 1189, 2146, 3874, 6993, 12623, 22786, 41131, 74245, 134019, 241917, 436683, 788254, 1422873, 2568420, 4636240, 8368850, 15106563, 27268770, 49222700, 88851613, 160385536, 289511009, 522594658, 943332613, 1702804277
Offset: 0

Views

Author

Geoffrey Critzer, Mar 01 2014

Keywords

Comments

In the Penney game THTH beats HTHH 9 times out of 14 yet the expected wait time for THTH is 20 while that for HTHH is only 18.

Examples

			a(7)=6 because we have: TTTTHTH, THTTHTH, THHTHTH, HTTTHTH, HHTTHTH, HHHTHTH.
		

Crossrefs

Cf. A171861.

Programs

  • Mathematica
    nn=40;CoefficientList[Series[(x^4+x^7)/(1-2x+x^2-x^3-x^6),{x,0,nn}],x]
    LinearRecurrence[{2,-1,1,0,0,1},{0,0,0,0,1,2,3,6},50]

Formula

G.f.: G(x) = (x^4 + x^7)/(1 - 2x + x^2 - x^3 - x^6). We note G(1/2) = 9/14.
Previous Showing 11-20 of 20 results.