cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 78 results. Next

A323648 Numbers k such that the largest Dyck path of the symmetric representation of sigma(k) does not share any line segment with the largest Dyck path of the symmetric representation of sigma(k+1).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 15, 17, 19, 23, 27, 29, 31, 35, 39, 41, 47, 53, 55, 59, 63, 65, 71, 77, 79, 83, 87, 89, 95, 99, 103, 107, 111, 119, 125, 127, 131, 135, 139, 143, 149, 155, 159, 161, 167, 175, 179, 191, 195, 197, 199, 203, 207, 209, 215, 219, 223, 227, 233, 239, 251, 255
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2019

Keywords

Comments

Equivalently, numbers k such that in the perspective view of the stepped pyramid described in A245092, the steps of the n-th level do not share any vertical face with the steps of the level n + 1, starting from the top of the pyramid.
a(2) = 2 is the only even number in the sequence.
For more information about the Dyck paths, the connection with the sum of divisors function A000203, and the connection with the theory of partitions see A237593.

Crossrefs

Programs

  • Mathematica
    (* Function path[] is defined in A237270 *)
    a323648Q[n_] := Length[Select[Transpose[{Take[path[n+1], {2,-2}], path[n]}], #[[1]]==#[[2]]&]]<=1
    a323648[n_] := Select[Range[n], a323648Q]
    a323648[255]
    (* Functions a262259Q[ ] and a174973Q[ ] are defined in A279029 *)
    a323648[n_] := Select[Range[n], a262259Q[#+1]||a174973Q[#+1]&]
    a323648[255] (* Hartmut F. W. Hoft, Jan 25 2025 *)

Formula

a(n) = A279029(n+1) - 1, for n >= 1. - Hartmut F. W. Hoft, Jan 25 2025

Extensions

a(17)-a(63) by Hartmut F. W. Hoft, Jan 25 2025

A347980 a(n) is the smallest odd number k whose symmetric representation of sigma(k) has maximum width n.

Original entry on oeis.org

1, 15, 315, 2145, 3465, 17325, 45045, 51975, 225225, 405405, 315315, 765765, 1576575, 2297295
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 22 2021

Keywords

Comments

The sequence is not increasing with the maximum width of the symmetric representation just like A347979.
Observation: a(2)..a(14) ending in 5. - Omar E. Pol, Sep 23 2021

Examples

			The pattern of maximum widths of the parts in the symmetric representation of sigma for the first four terms in the sequence is:
   a(n) parts  successive widths
     1:   1          1
    15:   3        1 2 1
   315:   3        1 3 1
  2145:   7    1 2 3 4 3 2 1
		

Crossrefs

Programs

  • Mathematica
    a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
    a347980[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=1, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
    a347980[2500000,14] (* long evaluation time *)

A348705 a(n) is the total length of all line segments in the symmetric representation of sigma(n).

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 24, 32, 34, 40, 36, 48, 42, 54, 56, 64, 54, 72, 60, 80, 78, 82, 72, 96, 84, 96, 98, 112, 90, 120, 96, 128
Offset: 1

Views

Author

Omar E. Pol, Oct 30 2021

Keywords

Comments

a(n) is also the number of toothpicks of length 1 needed to represent the symmetric representation of sigma(n) (see the examples).
The diagram is symmetric thus all terms are even.
If the symmetric representation of sigma(n) has only one part (cf. A174973) or if it has two parts and they meet at the center of the Dyck path (cf. A262259) then a(n) = 4*n, otherwise a(n) < 4*n. In other words: if n is a term of A279029 then a(n) = 4*n, otherwise a(n) < 4*n.

Examples

			Illustration of initial terms:
.                                                          _ _ _ _
.                                            _ _ _        |_ _ _  |_
.                                _ _ _      |_ _ _|             |   |_
.                      _ _      |_ _  |_          |_ _          |_ _  |
.              _ _    |_ _|_        |_  |           | |             | |
.        _    |_  |       | |         | |           | |             | |
.       |_|     |_|       |_|         |_|           |_|             |_|
.
n:       1      2        3          4           5               6
a(n):    4      8       12         16          18              24
.
.                                                  _ _ _ _ _
.                            _ _ _ _ _            |_ _ _ _ _|
.        _ _ _ _            |_ _ _ _  |                     |_ _
.       |_ _ _ _|                   | |_                    |_  |
.               |_                  |_  |_ _                  |_|_ _
.                 |_ _                |_ _  |                     | |
.                   | |                   | |                     | |
.                   | |                   | |                     | |
.                   | |                   | |                     | |
.                   |_|                   |_|                     |_|
.
n:              7                    8                      9
a(n):          24                   32                     34
.
Another way for the illustration of initial terms is as follows:
--------------------------------------------------------------------------
.  n  a(n)                             Diagram
--------------------------------------------------------------------------
            _
   1   4   |_|  _
              _| |  _
   2   8     |_ _| | |  _
                _ _|_| | |  _
   3  12       |_ _|  _| | | |  _
                  _ _|  _| | | | |  _
   4  16         |_ _ _|  _|_| | | | |  _
                    _ _ _|  _ _| | | | | |  _
   5  18           |_ _ _| |    _| | | | | | |  _
                      _ _ _|  _|  _|_| | | | | | |  _
   6  24             |_ _ _ _|  _|  _ _| | | | | | | |  _
                        _ _ _ _|  _|  _ _| | | | | | | | |  _
   7  24               |_ _ _ _| |  _|  _ _|_| | | | | | | | |  _
                          _ _ _ _| |  _| |  _ _| | | | | | | | | |  _
   8  32                 |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |  _
                            _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |
   9  34                   |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | |
                              _ _ _ _ _| |  _|  _|    _ _| | | | | | | | |
  10  40                     |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | |
                                _ _ _ _ _ _| |      _| |  _ _ _| | | | | |
  11  36                       |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | |
                                  _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | |
  12  48                         |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| |
                                    _ _ _ _ _ _ _| |  _| |    _| |  _ _ _|
  13  42                           |_ _ _ _ _ _ _| | |  _|  _|  _| |
                                      _ _ _ _ _ _ _| | |_ _|  _|  _|
  14  54                             |_ _ _ _ _ _ _ _| |  _ _|  _|
                                        _ _ _ _ _ _ _ _| |  _ _|
  15  56                               |_ _ _ _ _ _ _ _| | |
                                          _ _ _ _ _ _ _ _| |
  16  64                                 |_ _ _ _ _ _ _ _ _|
...
		

Crossrefs

Cf. A008586 (upper bounds).
Cf. A237271 (number of parts or regions).
Cf. A340833 (number of vertices).
Cf. A340846 (number of edges).
Cf. A239931-A239934 (illustration of first 32 diagrams).

Formula

a(n) = 2*A348854(n).
a(n) = A008586(n) - A279228(n). - Omar E. Pol, Dec 13 2021

A387030 Irregular triangle read by rows: T(n,k) is the number of primes in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 0, 1, 3, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 2, 0, 1, 1, 1, 0, 1, 1, 0, 2, 0, 1, 3, 0, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 13 2025

Keywords

Comments

In a sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
The 2-dense sublists of divisors of n are the maximal sublists whose terms increase by a factor of at most 2.
It is conjectured that row lengths are given by A237271.

Examples

			Triangle begins:
  0;
  1;
  0, 1;
  1;
  0, 1;
  2;
  0, 1;
  1;
  0, 1, 0;
  1, 1;
  0, 1;
  2;
  0, 1;
  1, 1;
  0, 2, 0;
  ...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2] and [5, 10]. There is a prime number in each sublist, so row 10 is [1, 1].
For n = 15 the list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15]. Only the second sublist contains primes, so row 15 is [0, 2, 0].
		

Crossrefs

Row sums give A001221.

Programs

  • Mathematica
    A387030row[n_] := Map[Count[#, _?PrimeQ] &, Split[Divisors[n], #2 <= 2*# &]];
    Array[A387030row, 50] (* Paolo Xausa, Aug 19 2025 *)

A346864 Irregular triangle read by rows in which row n lists the row A014105(n) of A237591, n >= 1.

Original entry on oeis.org

2, 1, 6, 2, 1, 1, 11, 4, 3, 1, 1, 1, 19, 6, 4, 2, 2, 1, 1, 1, 28, 10, 5, 3, 3, 2, 1, 1, 1, 1, 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1, 53, 18, 10, 5, 4, 3, 3, 2, 1, 2, 1, 1, 1, 1, 69, 23, 12, 7, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 86, 29, 15, 9, 6, 5, 4, 2, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 17 2021

Keywords

Comments

The characteristic shape of the symmetric representation of sigma(A014105(n)) consists in that in the main diagonal of the diagram the smallest Dyck path has a peak and the largest Dyck path has a valley.
So knowing this characteristic shape we can know if a number is a second hexagonal number (or not) just by looking at the diagram, even ignoring the concept of second hexagonal number.
Therefore we can see a geometric pattern of the distribution of the second hexagonal numbers in the stepped pyramid described in A245092.
T(n,k) is also the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A014105(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A014105(n).
T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th second hexagonal number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th second hexagonal number into exactly k + 1 consecutive parts.
1 together with the first column gives A317186. - Michel Marcus, Jan 12 2025

Examples

			Triangle begins:
   2,  1;
   6,  2,  1, 1;
  11,  4,  3, 1, 1, 1;
  19,  6,  4, 2, 2, 1, 1, 1;
  28, 10,  5, 3, 3, 2, 1, 1, 1, 1;
  40, 13,  7, 5, 3, 2, 2, 2, 1, 1, 1, 1;
  53, 18, 10, 5, 4, 3, 3, 2, 1, 2, 1, 1, 1, 1;
  69, 23, 12, 7, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1;
  86, 29, 15, 9, 6, 5, 4, 2, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1;
...
Illustration of initial terms:
Column h gives the n-th second hexagonal number (A014105).
Column S gives the sum of the divisors of the second hexagonal numbers which equals the area (and the number of cells) of the associated diagram.
--------------------------------------------------------------------------------------
  n   h   S   Diagram
--------------------------------------------------------------------------------------
                  _             _                     _                             _
                 | |           | |                   | |                           | |
              _ _|_|           | |                   | |                           | |
  1   3   4  |_ _|1            | |                   | |                           | |
               2               | |                   | |                           | |
                            _ _| |                   | |                           | |
                           |  _ _|                   | |                           | |
                        _ _|_|                       | |                           | |
                       |  _|1                        | |                           | |
              _ _ _ _ _| | 1                         | |                           | |
  2  10  18  |_ _ _ _ _ _|2                          | |                           | |
                   6                          _ _ _ _|_|                           | |
                                             | |                                   | |
                                            _| |                                   | |
                                           |  _|                                   | |
                                        _ _|_|                                     | |
                                    _ _|  _|1                                      | |
                                   |_ _ _|1 1                                      | |
                                   |  3                               _ _ _ _ _ _ _| |
                                   |4                                |    _ _ _ _ _ _|
              _ _ _ _ _ _ _ _ _ _ _|                                 |   |
  3  21  32  |_ _ _ _ _ _ _ _ _ _ _|                              _ _|   |
                       11                                        |       |
                                                                _|    _ _|
                                                               |     |
                                                            _ _|    _|
                                                        _ _|      _|
                                                       |        _|1
                                                  _ _ _|    _ _|1 1
                                                 |         | 2
                                                 |  _ _ _ _|2
                                                 | |   4
                                                 | |
                                                 | |6
                                                 | |
              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  4  36  91  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
                               19
.
		

Crossrefs

Row sums give A014105, n >= 1.
Row lengths give A005843.
For the characteristic shape of sigma(A000040(n)) see A346871.
For the characteristic shape of sigma(A000079(n)) see A346872.
For the characteristic shape of sigma(A000217(n)) see A346873.
For the visualization of Mersenne numbers A000225 see A346874.
For the characteristic shape of sigma(A000384(n)) see A346875.
For the characteristic shape of sigma(A000396(n)) see A346876.
For the characteristic shape of sigma(A008588(n)) see A224613.
For the characteristic shape of sigma(A174973(n)) see A317305.

Programs

  • PARI
    row(n) = my(m=n*(2*n + 1)); vector((sqrtint(8*m+1)-1)\2, k, ceil((m+1)/k - (k+1)/2) - ceil((m+1)/(k+1) - (k+2)/2)); \\ Michel Marcus, Jan 12 2025

A347979 a(n) is the smallest even number k whose symmetric representation of sigma(k) has maximum width n.

Original entry on oeis.org

2, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 22 2021

Keywords

Comments

For the 30 known terms the symmetric representation of sigma consists of a single part, i.e., this is a subsequence of A174973 = A238443.
The sequence is not increasing with the maximum width of the symmetric representation of sigma.
Also a(33) = 2162160 is the only further number in the sequence less than 2500000.

Examples

			The pattern of maximum widths within the single part of the symmetric representation of sigma for the first four numbers in the sequence is:
  a(n) parts successive widths
    2:   1           1
    6:   1         1 2 1
   60:   1     1 2 3 2 3 2 1
  120:   1     1 2 3 4 3 2 1
		

Crossrefs

Programs

  • Mathematica
    a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
    a347979[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=2, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
    a347979[2500000, 33] (* computes a(1..30), a(33); a(31..32) > 2500000 *)

Formula

It appears that a(n) = A250070(n) if n >= 2.

A363122 Numbers k such that the highest power of 2 dividing k is larger than the highest power of p dividing k for any odd prime p.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 120, 128, 144, 160, 168, 176, 192, 208, 224, 240, 256, 280, 288, 320, 336, 352, 384, 416, 448, 480, 512, 528, 544, 560, 576, 608, 624, 640, 672, 704, 720, 736, 768, 800, 832, 840, 864, 880, 896, 928, 960, 992
Offset: 1

Views

Author

Amiram Eldar, May 16 2023

Keywords

Comments

Numbers k such that A006519(k) = A034699(k).
If k is a term of this sequence then k*2^m is a term for any m >= 0. The primitive terms are in A363123.

Crossrefs

Subsequence of A174973.

Programs

  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, 2]}, 2^e > Max[Power @@@ FactorInteger[n/2^e]]]; Select[Range[1000], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n>>e); if(m == 1, n>1, f = factor(m); 2^e > vecmax(vector(#f~, i, f[i, 1]^f[i, 2]))); }
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A363122_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:n&-n>max((p**e for p, e in factorint(n>>(~n&n-1).bit_length()).items()),default=0),count(max(startvalue,2)))
    A363122_list = list(islice(A363122_gen(),20)) # Chai Wah Wu, May 17 2023

A386989 Irregular triangle read by rows: T(n,k) is the product of terms in the k-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 1, 3, 8, 1, 5, 36, 1, 7, 64, 1, 3, 9, 2, 50, 1, 11, 1728, 1, 13, 2, 98, 1, 15, 15, 1024, 1, 17, 5832, 1, 19, 8000, 1, 3, 7, 21, 2, 242, 1, 23, 331776, 1, 5, 25, 2, 338, 1, 3, 9, 27, 21952, 1, 29, 810000, 1, 31, 32768, 1, 3, 11, 33, 2, 578, 1, 35, 35, 10077696, 1, 37, 2, 722, 1, 3, 13, 39, 2560000
Offset: 1

Views

Author

Omar E. Pol, Aug 12 2025

Keywords

Comments

In a sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
The 2-dense sublists of divisors of n are the maximal sublists whose terms increase by a factor of at most 2.
It is conjectured that row lengths are given by A237271.

Examples

			Triangle begins:
   1;
   2;
   1,  3;
   8;
   1,  5;
  36;
   1,  7;
  64;
   1,  3,  9;
   2, 50;
  ...
For n = 10 the list of divisors of 10 is [1, 2, 5, 10]. There are two 2-dense sublists of divisors of 10, they are [1, 2] and [5, 10]. The product of terms are 1*2 = 2 and 5*10 = 50 respectively, so the row 10 of the triangle is [2, 50].
		

Crossrefs

Row products give A007955.

Programs

  • Mathematica
    A386989row[n_] :=Times @@@ Split[Divisors[n], #2/# <= 2 &];
    Array[A386989row, 50] (* Paolo Xausa, Aug 29 2025 *)

A196149 Numbers whose divisors increase by a factor of 3 or less.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 15, 16, 18, 20, 21, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 54, 56, 60, 63, 64, 66, 70, 72, 75, 78, 80, 81, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 117, 120, 126, 128, 130, 132, 135, 136, 140, 144, 147, 150
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 28 2011

Keywords

Comments

The polymath8 project led by Terry Tao refers to these numbers as "3-densely divisible". In general they say that n is y-densely divisible if its divisors increase by a factor of y or less, or equivalently, if for every R with 1 <= R <= n, there is a divisor in the interval [R/y,R]. They use this as a weakening of the condition that n be y-smooth. - David S. Metzler, Jul 02 2013
Let D(x) denote the number of such integers up to x. D(x) has order of magnitude x/log(x) (See Saias 1997). Moreover, we have D(x) = c*x/log(x) + O(x/(log(x))^2), where c = 2.05544... (See Weingartner 2015, 2019). As a result, a(n) = C*n*log(n*log(n)) + O(n), where C = 1/c = 0.486513... - Andreas Weingartner, Jun 25 2021

Examples

			14 is not a term because its divisors are 1,2,7,14, and the gap from 2 to 7 is more than a factor of 3. - _N. J. A. Sloane_, Aug 03 2015
		

Crossrefs

A174973 is a subsequence.
Cf. A027750.

Programs

  • Haskell
    a196149 n = a196149_list !! (n-1)
    a196149_list = filter f [1..] where
       f n = all (<= 0) $ zipWith (-) (tail divs) (map (* 3) divs)
                          where divs = a027750_row' n
    -- Reinhard Zumkeller, Jun 25 2015, Sep 28 2011
    
  • Mathematica
    dif3[n_]:=Max[#[[2]]/#[[1]]&/@Partition[Divisors[n],2,1]]<=3; Select[ Range[ 200],dif3] (* Harvey P. Dale, Jun 08 2015 *)
  • PARI
    is(n)=my(d=divisors(n));for(i=2,#d,if(d[i]>3*d[i-1],return(0)));1 \\ Charles R Greathouse IV, Jul 06 2013
    
  • Python
    from sympy import divisors
    def ok(n):
        d = divisors(n)
        return all(d[i]/d[i-1] <= 3 for i in range(1, len(d)))
    print(list(filter(ok, range(1, 151)))) # Michael S. Branicky, Jun 25 2021

Formula

a(n) = A052287(n) / 3.
a(n) = C*n*log(n*log(n)) + O(n), where C = 0.486513… (See comments). - Andreas Weingartner, Jun 25 2021

A317306 Powers of 2 and even perfect numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 28, 32, 64, 128, 256, 496, 512, 1024, 2048, 4096, 8128, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33550336, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589869056, 8589934592
Offset: 1

Views

Author

Omar E. Pol, Aug 23 2018

Keywords

Comments

Numbers k such that the symmetric representation of sigma(k) has only one part, and apart from the central width, the rest of the widths are 1's.
Note that the above definition implies that the central width of the symmetric representation of sigma(k) is 1 or 2. For powers of 2 the central width is 1. For even perfect numbers the central width is 2 (see example).

Examples

			Illustration of initial terms:
.        _ _   _   _   _               _                       _       _
.    1  |_| | | | | | | |             | |                     | |     | |
.    2  |_ _|_| | | | | |             | |                     | |     | |
.        _ _|  _|_| | | |             | |                     | |     | |
.    4  |_ _ _|    _|_| |             | |                     | |     | |
.        _ _ _|  _|  _ _|             | |                     | |     | |
.    6  |_ _ _ _|  _|                 | |                     | |     | |
.        _ _ _ _| |                   | |                     | |     | |
.    8  |_ _ _ _ _|              _ _ _| |                     | |     | |
.                               |  _ _ _|                     | |     | |
.                              _| |                           | |     | |
.                            _|  _|                           | |     | |
.                        _ _|  _|                             | |     | |
.                       |  _ _|                               | |     | |
.                       | |                          _ _ _ _ _| |     | |
.        _ _ _ _ _ _ _ _| |                         |  _ _ _ _ _|     | |
.   16  |_ _ _ _ _ _ _ _ _|                         | |    _ _ _ _ _ _| |
.                                                _ _| |   |  _ _ _ _ _ _|
.                                            _ _|  _ _|   | |
.                                           |    _|    _ _| |
.                                          _|  _|     |  _ _|
.                                         |  _|      _| |
.                                    _ _ _| |      _|  _|
.                                   |  _ _ _|  _ _|  _|
.                                   | |       |  _ _|
.                                   | |  _ _ _| |
.                                   | | |  _ _ _|
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
.   28  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.                                       | |
.                                       | |
.        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.   32  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma has only one part, and apart from the central width, the rest of the widths are 1's.
A317307(n) is the area (or the number of cells) in the n-th region of the diagram.
		

Crossrefs

Union of A000079 and A000396 assuming there are no odd perfect numbers.
Subsequence of A174973.
Cf. A249351 (the widths).
Cf. A317307(n) = sigma(a(n)).
Previous Showing 31-40 of 78 results. Next