cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A325557 Number of compositions of n with equal differences up to sign.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 13, 12, 20, 24, 25, 29, 49, 40, 50, 64, 86, 80, 105, 102, 164, 175, 186, 208, 325, 316, 382, 476, 624, 660, 814, 961, 1331, 1500, 1739, 2140, 2877, 3274, 3939, 4901, 6345, 7448, 9054, 11157, 14315, 17181, 20769, 25843, 32947, 39639, 48257, 60075
Offset: 0

Views

Author

Gus Wiseman, May 11 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(8) = 20 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (121)   (41)     (42)      (43)       (44)
                    (1111)  (131)    (51)      (52)       (53)
                            (212)    (123)     (61)       (62)
                            (11111)  (141)     (151)      (71)
                                     (222)     (232)      (161)
                                     (321)     (313)      (242)
                                     (1212)    (12121)    (323)
                                     (2121)    (1111111)  (1232)
                                     (111111)             (1313)
                                                          (2123)
                                                          (2222)
                                                          (2321)
                                                          (3131)
                                                          (3212)
                                                          (21212)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Abs[Differences[#]]&]],{n,0,15}]
  • PARI
    step(R,n,s)={matrix(n, n, i, j, if(i>j, if(j>s, R[i-j, j-s]) + if(j+s<=n, R[i-j, j+s])) )}
    w(n,s)={my(R=matid(n), t=0); while(R, R=step(R,n,s); t+=vecsum(R[n,])); t}
    a(n) = {numdiv(max(1,n)) + sum(s=1, n-1, w(n,s))} \\ Andrew Howroyd, Aug 22 2019

Extensions

a(26)-a(42) from Lars Blomberg, May 30 2019
Terms a(43) and beyond from Andrew Howroyd, Aug 22 2019

A049983 a(n) is the number of arithmetic progressions of 2 or more positive integers, strictly increasing with sum <= n.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 10, 13, 19, 24, 29, 37, 43, 50, 62, 70, 78, 92, 101, 112, 129, 141, 152, 171, 185, 199, 221, 237, 251, 278, 293, 310, 337, 356, 377, 409, 427, 448, 480, 505, 525, 563, 584, 609, 651, 677, 700, 742, 768, 800, 843, 873, 899, 948, 981, 1014, 1062, 1095, 1124, 1183, 1213, 1248, 1304, 1341, 1380
Offset: 1

Views

Author

Keywords

Examples

			a(7) = 10 because we have the following arithmetic progressions of two or more positive integers, strictly increasing with sum <= n = 7: 1+2, 1+3, 1+4, 1+5, 1+6, 2+3, 2+4, 2+5, 3+4, and 1+2+3. - _Petros Hadjicostas_, Sep 27 2019
		

Crossrefs

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049982(k) = -n + Sum_{k = 1..n} A049980(k) = -n + A049981(k).
G.f.: (g.f. of A049982)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 27 2019

A070211 Number of compositions (ordered partitions) of n that are concave-down sequences.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 18, 24, 34, 42, 52, 68, 82, 101, 126, 147, 175, 213, 246, 289, 344, 392, 453, 530, 598, 687, 791, 885, 1007, 1151, 1276, 1438, 1629, 1806, 2018, 2262, 2490, 2775, 3091, 3387, 3754, 4165, 4542, 5011, 5527, 6012, 6600, 7245, 7864, 8614
Offset: 0

Views

Author

Pontus von Brömssen, May 07 2002

Keywords

Comments

Here, a finite sequence is concave if each term (other than the first or last) is at least the average of the two adjacent terms. - Eric M. Schmidt, Sep 29 2013
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1). Then a(n) is the number of compositions of n with weakly decreasing differences. - Gus Wiseman, May 15 2019

Examples

			Out of the 8 ordered partitions of 4, only 2+1+1 and 1+1+2 are not concave, so a(4)=6.
From _Gus Wiseman_, May 15 2019: (Start)
The a(1) = 1 through a(6) = 14 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (1111)  (122)    (51)
                            (131)    (123)
                            (221)    (132)
                            (11111)  (141)
                                     (222)
                                     (231)
                                     (321)
                                     (1221)
                                     (111111)
(End)
		

Crossrefs

Cf. A000079, A001523 (weakly unimodal compositions), A069916, A175342, A320466, A325361 (concave-down partitions), A325545, A325546 (concave-up compositions), A325547, A325548, A325557.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Differences[#]&]],{n,0,15}] (* Gus Wiseman, May 15 2019 *)
  • Sage
    def A070211(n) : return sum(all(2*p[i] >= p[i-1] + p[i+1] for i in range(1, len(p)-1)) for p in Compositions(n)) # Eric M. Schmidt, Sep 29 2013

Extensions

Name edited by Gus Wiseman, May 15 2019

A342527 Number of compositions of n with alternating parts equal.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 11, 12, 16, 17, 21, 20, 29, 24, 31, 32, 38, 32, 46, 36, 51, 46, 51, 44, 69, 51, 61, 60, 73, 56, 87, 60, 84, 74, 81, 76, 110, 72, 91, 88, 115, 80, 123, 84, 117, 112, 111, 92, 153, 101, 132, 116, 139, 104, 159, 120, 161, 130, 141, 116, 205, 120, 151, 156, 178, 142, 195, 132, 183, 158
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2021

Keywords

Comments

These are finite sequences q of positive integers summing to n such that q(i) = q(i+2) for all possible i.

Examples

			The a(1) = 1 through a(8) = 16 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (121)   (41)     (42)      (43)       (44)
                    (1111)  (131)    (51)      (52)       (53)
                            (212)    (141)     (61)       (62)
                            (11111)  (222)     (151)      (71)
                                     (1212)    (232)      (161)
                                     (2121)    (313)      (242)
                                     (111111)  (12121)    (323)
                                               (1111111)  (1313)
                                                          (2222)
                                                          (3131)
                                                          (21212)
                                                          (11111111)
		

Crossrefs

The odd-length case is A062968.
The even-length case is A065608.
The version with alternating parts unequal is A224958 (unordered: A000726).
The version with alternating parts weakly decreasing is A342528.
A000005 counts constant compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000203 adds up divisors.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A175342 counts compositions with constant differences.
A342495 counts compositions with constant first quotients.
A342496 counts partitions with constant first quotients (strict: A342515, ranking: A342522).

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]

Formula

a(n) = 1 + n + A000203(n) - 2*A000005(n).
a(n) = A065608(n) + A062968(n).

A238423 Number of compositions of n avoiding three consecutive parts in arithmetic progression.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 22, 42, 81, 149, 278, 516, 971, 1812, 3374, 6297, 11770, 21970, 41002, 76523, 142901, 266779, 497957, 929563, 1735418, 3239698, 6047738, 11289791, 21076118, 39344992, 73448769, 137113953, 255965109, 477835991, 892023121, 1665227859
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 26 2014

Keywords

Comments

These are compositions of n whose second-differences are nonzero. - Gus Wiseman, Jun 03 2019

Examples

			The a(5) = 13 such compositions are:
01:  [ 1 1 2 1 ]
02:  [ 1 1 3 ]
03:  [ 1 2 1 1 ]
04:  [ 1 2 2 ]
05:  [ 1 3 1 ]
06:  [ 1 4 ]
07:  [ 2 1 2 ]
08:  [ 2 2 1 ]
09:  [ 2 3 ]
10:  [ 3 1 1 ]
11:  [ 3 2 ]
12:  [ 4 1 ]
13:  [ 5 ]
		

Crossrefs

Cf. A238424 (equivalent for partitions).
Cf. A238569 (equivalent for any 3-term arithmetic progression).

Programs

  • Maple
    # b(n, r, d): number of compositions of n where the leftmost part j
    #             does not have distance d to the recent part r
    b:= proc(n, r, d) option remember; `if`(n=0, 1,
          add(`if`(j=r+d, 0, b(n-j, j, j-r)), j=1..n))
        end:
    a:= n-> b(n, infinity, 0):
    seq(a(n), n=0..45);
  • Mathematica
    b[n_, r_, d_] := b[n, r, d] = If[n == 0, 1, Sum[If[j == r + d, 0, b[n - j, j, j - r]], {j, 1, n}]]; a[n_] := b[n, Infinity, 0]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Nov 06 2014, after Maple *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Differences[#,2],0]&]],{n,0,10}] (* Gus Wiseman, Jun 03 2019 *)

Formula

a(n) ~ c * d^n, where d = 1.866800016014240677813344121155900699..., c = 0.540817940878009616510727217687704495... - Vaclav Kotesovec, May 01 2014

A295370 Number of permutations of [n] avoiding three consecutive terms in arithmetic progression.

Original entry on oeis.org

1, 1, 2, 4, 18, 80, 482, 3280, 26244, 231148, 2320130, 25238348, 302834694, 3909539452, 54761642704, 816758411516, 13076340876500, 221396129723368, 3985720881222850, 75503196628737920, 1510373288335622576, 31634502738658957588, 696162960370556156224, 15978760340940405262668
Offset: 0

Views

Author

Alois P. Heinz, Nov 20 2017

Keywords

Comments

These are permutations of n whose second-differences are nonzero. - Gus Wiseman, Jun 03 2019

Examples

			a(3) = 4: 132, 213, 231, 312.
a(4) = 18: 1243, 1324, 1342, 1423, 2134, 2143, 2314, 2413, 2431, 3124, 3142, 3241, 3412, 3421, 4132, 4213, 4231, 4312.
		

Crossrefs

Programs

  • Maple
    b:= proc(s, j, k) option remember; `if`(s={}, 1,
          add(`if`(k=0 or 2*j<>i+k, b(s minus {i}, i,
              `if`(2*i-j in s, j, 0)), 0), i=s))
        end:
    a:= n-> b({$1..n}, 0$2):
    seq(a(n), n=0..12);
  • Mathematica
    Table[Length[Select[Permutations[Range[n]],!MemberQ[Differences[#,2],0]&]],{n,0,5}] (* Gus Wiseman, Jun 03 2019 *)
    b[s_, j_, k_] := b[s, j, k] = If[s == {}, 1, Sum[If[k == 0 || 2*j != i + k, b[s~Complement~{i}, i, If[MemberQ[s, 2*i - j ], j, 0]], 0], {i, s}]];
    a[n_] := a[n] = b[Range[n], 0, 0];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 20 2023, after Alois P. Heinz *)

Extensions

a(22)-a(23) from Vaclav Kotesovec, Mar 22 2022

A329861 Triangle read by rows where T(n,k) is the number of compositions of n with cuts-resistance k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 3, 0, 1, 0, 7, 6, 2, 0, 1, 0, 14, 9, 6, 2, 0, 1, 0, 23, 22, 10, 6, 2, 0, 1, 0, 39, 47, 22, 10, 7, 2, 0, 1, 0, 71, 88, 52, 24, 10, 8, 2, 0, 1, 0, 124, 179, 101, 59, 26, 11, 9, 2, 0, 1, 0, 214, 354, 220, 112, 71, 28, 12, 10, 2, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Nov 23 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
For the operation of shortening all runs by 1, cuts-resistance is defined as the number of applications required to reach an empty word.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  3  0  1
  0  4  3  0  1
  0  7  6  2  0  1
  0 14  9  6  2  0  1
  0 23 22 10  6  2  0  1
  0 39 47 22 10  7  2  0  1
  0 71 88 52 24 10  8  2  0  1
Row n = 6 counts the following compositions (empty columns not shown):
  (6)     (33)    (222)    (11112)  (111111)
  (15)    (114)   (1113)   (21111)
  (24)    (411)   (3111)
  (42)    (1122)  (11121)
  (51)    (1131)  (11211)
  (123)   (1221)  (12111)
  (132)   (1311)
  (141)   (2112)
  (213)   (2211)
  (231)
  (312)
  (321)
  (1212)
  (2121)
		

Crossrefs

Row sums are A000079.
Column k = 1 is A003242 (for n > 0).
Column k = 2 is A329863.
Row sums without the k = 1 column are A261983.
The version for runs-resistance is A329744.
The version for binary vectors is A329860.
The cuts-resistance of the binary expansion of n is A319416.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]==k&]],{n,0,10},{k,0,n}]

A049981 a(n) is the number of arithmetic progressions of positive integers, strictly increasing with sum <= n.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 17, 21, 28, 34, 40, 49, 56, 64, 77, 86, 95, 110, 120, 132, 150, 163, 175, 195, 210, 225, 248, 265, 280, 308, 324, 342, 370, 390, 412, 445, 464, 486, 519, 545, 566, 605, 627, 653, 696, 723, 747, 790, 817, 850, 894, 925, 952, 1002, 1036, 1070, 1119, 1153, 1183, 1243, 1274, 1310
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049980(k) = n + Sum_{k = 1..n} A049982(k).
G.f.: (g.f. of A049980)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A114921 Number of unimodal compositions of n+2 where the maximal part appears exactly twice.

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 11, 16, 27, 40, 63, 92, 141, 202, 299, 426, 614, 862, 1222, 1694, 2362, 3242, 4456, 6054, 8229, 11072, 14891, 19872, 26477, 35050, 46320, 60866, 79827, 104194, 135703, 176008, 227791, 293702, 377874, 484554, 620011, 790952, 1006924
Offset: 0

Views

Author

Michael Somos, Jan 07 2006

Keywords

Comments

Old name was: Expansion of a q-series.
a(n) is also the number of 2-colored partitions of n with the same number of parts in each color. - Shishuo Fu, May 30 2017
From Gus Wiseman, Mar 25 2021: (Start)
Also the number of even-length compositions of n with alternating parts weakly decreasing. Allowing odd lengths also gives A342528. The version with alternating parts strictly decreasing appears to be A064428. The a(2) = 1 through a(7) = 16 compositions are:
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5)
(3,1) (3,2) (3,3) (3,4)
(1,1,1,1) (4,1) (4,2) (4,3)
(1,2,1,1) (5,1) (5,2)
(2,1,1,1) (1,2,1,2) (6,1)
(1,3,1,1) (1,3,1,2)
(2,1,2,1) (1,4,1,1)
(2,2,1,1) (2,2,1,2)
(3,1,1,1) (2,2,2,1)
(1,1,1,1,1,1) (2,3,1,1)
(3,1,2,1)
(3,2,1,1)
(4,1,1,1)
(1,2,1,1,1,1)
(2,1,1,1,1,1)
(End)

Examples

			From _Joerg Arndt_, Jun 10 2013: (Start)
There are a(7)=16 such compositions of 7+2=9 where the maximal part appears twice:
  01:  [ 1 1 1 1 1 2 2 ]
  02:  [ 1 1 1 1 2 2 1 ]
  03:  [ 1 1 1 2 2 1 1 ]
  04:  [ 1 1 1 3 3 ]
  05:  [ 1 1 2 2 1 1 1 ]
  06:  [ 1 1 3 3 1 ]
  07:  [ 1 2 2 1 1 1 1 ]
  08:  [ 1 2 3 3 ]
  09:  [ 1 3 3 1 1 ]
  10:  [ 1 3 3 2 ]
  11:  [ 1 4 4 ]
  12:  [ 2 2 1 1 1 1 1 ]
  13:  [ 2 3 3 1 ]
  14:  [ 3 3 1 1 1 ]
  15:  [ 3 3 2 1 ]
  16:  [ 4 4 1 ]
(End)
		

Crossrefs

Cf. A226541 (max part appears three times), A188674 (max part m appears m times), A001523 (max part appears any number of times).
Column k=2 of A247255.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000203 adds up divisors.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A034008 counts even-length compositions.
A065608 counts even-length compositions with alternating parts equal.
A342528 counts compositions with alternating parts weakly decreasing.
A342532 counts even-length compositions with alternating parts unequal.

Programs

  • Mathematica
    max = 50; s = (1+Sum[2*(-1)^k*q^(k(k+1)/2), {k, 1, max}])/QPochhammer[q]^2+ O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, from 1st g.f. *)
    wdw[q_]:=And@@Table[q[[i]]>=q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],EvenQ[Length[#]]&],wdw]],{n,0,15}] (* Gus Wiseman, Mar 25 2021 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, n\2, x^(2*k) / prod(i=1, k, 1 - x^i, 1 + x * O(x^n))^2), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=1, sqrtint(8*n + 1)\2, 2*(-1)^k * x^((k^2+k)/2), 1 + A) / eta(x + A)^2, n))};

Formula

G.f.: 1 + Sum_{k>0} (x^k / ((1-x)(1-x^2)...(1-x^k)))^2 = (1 + Sum_{k>0} 2 (-1)^k x^((k^2+k)/2) ) / (Product_{k>0} (1 - x^k))^2.
G.f.: 1 + x*(1 - G(0))/(1-x) where G(k) = 1 - x/(1-x^(k+1))^2/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A006330(n) - A001523(n). - Vaclav Kotesovec, Jun 22 2015
a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (16 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Oct 24 2018

Extensions

New name from Joerg Arndt, Jun 10 2013

A325546 Number of compositions of n with weakly increasing differences.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 19, 28, 41, 62, 87, 120, 170, 228, 303, 408, 534, 689, 899, 1145, 1449, 1842, 2306, 2863, 3571, 4398, 5386, 6610, 8039, 9716, 11775, 14157, 16938, 20293, 24166, 28643, 33995, 40134, 47199, 55540, 65088, 75994, 88776, 103328, 119886, 139126
Offset: 0

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

Also compositions of n whose plot is concave-up.
A composition of n is a finite sequence of positive integers summing to n.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1).

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (112)   (41)     (42)
                    (211)   (113)    (51)
                    (1111)  (212)    (114)
                            (311)    (123)
                            (1112)   (213)
                            (2111)   (222)
                            (11111)  (312)
                                     (321)
                                     (411)
                                     (1113)
                                     (2112)
                                     (3111)
                                     (11112)
                                     (21111)
                                     (111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Differences[#]&]],{n,0,15}]
  • PARI
    \\ Row sums of R(n) give A007294 (=breakdown by width).
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-w-1)\t + 1, v[i-w-(k-1)*t]))); Mat(L)}
    seq(n)={my(M=R(n)); Vec(1 + sum(i=1, n, my(p=sum(w=1, min(#M,n\i), x^(w*i)*sum(j=1, n-i*w, x^j*M[j,w])));  x^i/(1 - x^i)*(1 + p + O(x*x^(n-i)))^2))} \\ Andrew Howroyd, Aug 28 2019

Extensions

More terms from Alois P. Heinz, May 11 2019
Previous Showing 11-20 of 42 results. Next