cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A269559 Decimal expansion of Psi(log(2)), negated.

Original entry on oeis.org

1, 2, 3, 9, 5, 9, 7, 2, 7, 9, 6, 1, 7, 6, 1, 8, 5, 0, 8, 2, 4, 4, 1, 2, 7, 5, 5, 1, 6, 8, 6, 0, 8, 4, 2, 4, 5, 4, 3, 3, 2, 8, 9, 5, 2, 2, 6, 8, 7, 4, 2, 0, 8, 6, 6, 4, 6, 1, 6, 4, 8, 9, 8, 8, 8, 1, 9, 4, 0, 6, 3, 8, 9, 3, 3, 4, 5, 3, 5, 9, 0, 1, 5, 8, 7, 3, 2, 6, 0, 6, 9, 4, 5, 7, 3, 4, 8, 8, 2, 3, 8, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			-1.2395972796176185082441275516860842454332895226874208...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(log(2))
  • Maple
    evalf(Psi(ln(2)), 120);
  • Mathematica
    RealDigits[PolyGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(log(2))
    

A340722 Decimal expansion of Gamma(4/5).

Original entry on oeis.org

1, 1, 6, 4, 2, 2, 9, 7, 1, 3, 7, 2, 5, 3, 0, 3, 3, 7, 3, 6, 3, 6, 3, 2, 0, 9, 3, 8, 2, 6, 8, 4, 5, 8, 6, 9, 3, 1, 4, 1, 9, 6, 1, 7, 6, 8, 8, 9, 1, 1, 8, 7, 7, 5, 2, 9, 8, 4, 8, 9, 4, 4, 6, 7, 8, 6, 1, 8, 3, 5, 4, 6, 6, 0, 7, 8, 9, 5, 3, 7, 4, 4, 7, 5
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.164229713725303373636...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(4/5),120) ;
  • Mathematica
    RealDigits[Gamma[4/5], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A175380 = Pi/A019845. [DLMF (5.5.3)]
this * A340723 * 2^(1/10)/sqrt(2*Pi) = A340721. [DLMF (5.5.5)]

A246745 Decimal expansion of Gamma(2/5).

Original entry on oeis.org

2, 2, 1, 8, 1, 5, 9, 5, 4, 3, 7, 5, 7, 6, 8, 8, 2, 2, 3, 0, 5, 9, 0, 5, 4, 0, 2, 1, 9, 0, 7, 6, 7, 9, 4, 5, 0, 7, 7, 0, 5, 6, 6, 5, 0, 1, 7, 7, 1, 4, 6, 9, 5, 8, 2, 2, 4, 1, 9, 7, 7, 7, 5, 2, 6, 4, 6, 1, 8, 5, 1, 6, 8, 1, 2, 3, 0, 0, 4, 7, 3, 6, 5, 1, 0, 9, 9, 1, 6, 8, 3, 3, 5, 6, 1, 7, 9, 1, 7, 6, 9, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Sep 02 2014

Keywords

Examples

			2.21815954375768822305905402190767945077056650177146958224...
		

Crossrefs

Cf. A175379, A175380 (both constants are mentioned in Finch's Addenda), A340721.

Programs

  • Mathematica
    RealDigits[Gamma[2/5], 10, 103] // First
  • PARI
    gamma(2/5) \\ Michel Marcus, Sep 02 2014

A340721 Decimal expansion of Gamma(3/5).

Original entry on oeis.org

1, 4, 8, 9, 1, 9, 2, 2, 4, 8, 8, 1, 2, 8, 1, 7, 1, 0, 2, 3, 9, 4, 3, 3, 3, 3, 8, 8, 3, 2, 1, 3, 4, 2, 2, 8, 1, 3, 2, 0, 5, 9, 9, 0, 3, 8, 7, 5, 9, 9, 2, 4, 7, 3, 5, 3, 3, 8, 6, 7, 9, 5, 6, 4, 0, 4, 5, 0, 8, 0, 1, 6, 3, 1, 2, 1, 9, 3, 4, 9, 3, 8, 2
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.489192248812817102..
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(3/5),120) ;
  • Mathematica
    RealDigits[Gamma[3/5], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A246745 = Pi/A019881. [DLMF (5.5.3)]
this * A256191 *2^(7/10)/sqrt(2*Pi) = 2*A175380 [DLMF (5.5.5)]

A340724 Decimal expansion of Gamma(7/10).

Original entry on oeis.org

1, 2, 9, 8, 0, 5, 5, 3, 3, 2, 6, 4, 7, 5, 5, 7, 7, 8, 5, 6, 8, 1, 1, 7, 1, 1, 7, 9, 1, 5, 2, 8, 1, 1, 6, 1, 7, 7, 8, 4, 1, 4, 1, 1, 7, 0, 5, 5, 3, 9, 4, 6, 2, 4, 7, 9, 2, 1, 6, 4, 5, 3, 8, 8, 2, 5, 4, 1, 6, 8, 1, 5, 0, 8, 1, 8, 9, 7, 5, 7, 9, 8, 6
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.29805533264755778568...
		

Crossrefs

Programs

Formula

this * A340723 = Pi/A019863 [DLMF (5.5.3)]
this * A175380 * 2^(9/10)/sqrt(2*Pi) = 2*A246745. [DLMF (5.5.5)]

A371881 Decimal expansion of Gamma(1/20).

Original entry on oeis.org

1, 9, 4, 7, 0, 0, 8, 5, 3, 1, 1, 2, 5, 5, 5, 1, 2, 8, 6, 4, 0, 4, 7, 3, 2, 0, 9, 6, 7, 7, 2, 7, 1, 2, 7, 5, 4, 5, 6, 3, 0, 4, 1, 9, 5, 8, 3, 3, 4, 1, 9, 7, 5, 6, 8, 1, 0, 8, 2, 7, 8, 3, 7, 5, 5, 3, 6, 4, 5, 5, 6, 2, 1, 9, 5, 6, 3, 6, 4, 9, 1, 0, 7, 9, 0, 7, 7, 7, 4, 9, 8, 4, 3, 7, 7, 4, 1, 4, 2, 3, 0, 9, 6, 5, 7
Offset: 2

Views

Author

Vaclav Kotesovec, Apr 15 2024

Keywords

Examples

			19.4700853112555128640473209677271275456304195833419756810827837553645...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/20), 130);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    RealDigits[Gamma[1/20], 10, 120][[1]]
    RealDigits[2^(33/40) * 5^(5/16) * (1 + Sqrt[5])^(1/8) * Sqrt[5^(1/4) + Sqrt[2 + Sqrt[5]]] * Sqrt[Pi * Gamma[1/10]] * QPochhammer[E^(-2*Sqrt[5]*Pi)] / E^(Sqrt[5]*Pi/12), 10, 120][[1]]

Formula

Equals 2^(33/40) * 5^(5/16) * (1 + sqrt(5))^(1/8) * sqrt(5^(1/4) + sqrt(2 + sqrt(5))) * sqrt(Pi*Gamma(1/10)) * QPochhammer(exp(-2*sqrt(5)*Pi)) / exp(sqrt(5)*Pi/12).

A091545 First column sequence of the array (7,2)-Stirling2 A091747.

Original entry on oeis.org

1, 42, 5544, 1507968, 696681216, 489070213632, 485157651922944, 646229992361361408, 1112808046846264344576, 2405890997281623512973312, 6380422924790865556405223424, 20366309975932442856045473169408, 77025384328976498881563979526701056, 340606249502734078054275917467072069632
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

Also sixth column (m=5) sequence of triangle A091543.

Crossrefs

Programs

  • Mathematica
    a[n_] := 5^(2*n) * Pochhammer[1/5, n] * Pochhammer[2/5, n] / 2; Array[a, 15] (* Amiram Eldar, Sep 01 2025 *)

Formula

a(n) = Product_{j=0..n-1} ((5*j+2)*(5*j+1))/2, n>=1. From eq.12 of the Blasiak et al. reference with r=7, s=2, k=1.
a(n) = (5^(2*n))*risefac(1/5, n)*risefac(2/5, n)/2, n>=1, with risefac(x, n) = Pochhammer(x, n).
a(n) = fac5(5*n-3)*fac5(5*n-4)/2, n>=1, with fac5(5*n-4)/2 = A034323(n) and fac5(5*n-3) = A008548(n) (5-factorials).
E.g.f.: (hypergeom([1/5, 2/5], [], 25*x)-1)/2.
a(n) = A091747(n, 2), n>=1.
D-finite with recurrence a(n) - (5*n-3)*(5*n-4)*a(n-1) = 0. - R. J. Mathar, Jul 27 2022
a(n) ~ Pi * (5/e)^(2*n) * n^(2*n-2/5) / (Gamma(1/5) * Gamma(2/5)). - Amiram Eldar, Sep 01 2025
a(n) ~ sqrt(Pi*(1 + sqrt(5))) * 5^(2*n + 1/4) * n^(2*n - 2/5) / (Gamma(1/10) * 2^(7/10) * exp(2*n)). - Vaclav Kotesovec, Sep 01 2025

A371856 Decimal expansion of Integral_{x=0..oo} exp(-x^5) dx.

Original entry on oeis.org

9, 1, 8, 1, 6, 8, 7, 4, 2, 3, 9, 9, 7, 6, 0, 6, 1, 0, 6, 4, 0, 9, 5, 1, 6, 5, 5, 1, 8, 5, 8, 3, 0, 4, 0, 0, 6, 8, 6, 8, 2, 1, 9, 9, 9, 6, 5, 8, 6, 8, 0, 6, 0, 3, 5, 5, 7, 7, 7, 0, 6, 2, 7, 2, 4, 6, 0, 0, 7, 8, 5, 4, 6, 2, 1, 2, 8, 8, 9, 9, 9, 7, 9, 4, 8, 0, 7, 8, 8, 1, 6, 5, 7, 5, 5, 7, 0, 1, 4, 9, 1, 3, 8, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			0.91816874239976061064095165518583040068682...
		

Crossrefs

Decimal expansion of Integral_{x=0..oo} exp(-x^k) dx: A019704 (k=2), A202623 (k=3), A068467 (k=4), this sequence (k=5), A203126 (k=6), A371857 (k=7), A203125 (k=8).
Cf. A175380.

Programs

  • Mathematica
    RealDigits[Gamma[6/5], 10, 104][[1]]

Formula

Equals Gamma(6/5).
Equals A175380 / 5.

A371983 Decimal expansion of Gamma(1/30).

Original entry on oeis.org

2, 9, 4, 5, 4, 7, 7, 9, 7, 4, 5, 6, 9, 9, 6, 9, 4, 0, 1, 9, 6, 9, 6, 2, 0, 8, 2, 8, 8, 6, 3, 8, 3, 4, 5, 7, 3, 4, 7, 0, 1, 8, 7, 3, 6, 0, 5, 5, 7, 2, 9, 7, 1, 1, 0, 4, 6, 5, 6, 5, 4, 1, 5, 5, 6, 7, 4, 9, 8, 8, 0, 5, 4, 5, 9, 9, 0, 5, 0, 1, 2, 0, 8, 2, 1, 9, 5, 7, 9, 4, 8, 5, 0, 9, 6, 5, 2, 1, 2, 9, 3, 8, 7, 6, 7
Offset: 2

Views

Author

Vaclav Kotesovec, Apr 15 2024

Keywords

Examples

			29.4547797456996940196962082886383457347018736055729711046565415567498...
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(1/30), 130);  # Alois P. Heinz, Apr 15 2024
  • Mathematica
    RealDigits[Gamma[1/30], 10, 120][[1]]
    RealDigits[2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma[1/5] * Gamma[1/3] / ((10 + Sqrt[5] - Sqrt[75 + 30*Sqrt[5]])^(1/4) * Sqrt[Pi]), 10, 120][[1]]

Formula

Equals 3^(9/20) * sqrt(5 + sqrt(5)) * sqrt(sqrt(15) + sqrt(5 + 2*sqrt(5))) * Gamma(1/3) * Gamma(1/5) / (sqrt(Pi) * 2^(16/15) * 5^(1/6)).
Equals 2^(11/60) * 3^(9/20) * 5^(1/3) * Gamma(1/5) * Gamma(1/3) / ((10 + sqrt(5) - sqrt(75 + 30*sqrt(5)))^(1/4) * sqrt(Pi)).
Equals 8*Pi^2 / (Gamma(17/30) * Gamma(19/30) * Gamma(23/30)).
Equals Gamma(7/30) * Gamma(11/30) * Gamma(13/30) / (2*Pi*A019815).

A377405 Decimal expansion of Pi*csc(Pi/5).

Original entry on oeis.org

5, 3, 4, 4, 7, 9, 6, 6, 6, 0, 5, 7, 7, 9, 7, 5, 5, 6, 7, 1, 2, 5, 9, 2, 1, 8, 6, 2, 5, 3, 4, 4, 1, 3, 1, 9, 9, 5, 0, 7, 2, 5, 4, 6, 2, 6, 3, 3, 2, 6, 2, 2, 9, 3, 0, 0, 3, 3, 3, 1, 6, 2, 8, 1, 8, 9, 8, 1, 0, 5, 7, 4, 8, 3, 9, 5, 3, 7, 4, 5, 6, 6, 1, 3, 9, 0, 1, 9, 3, 8, 9, 7, 1, 3, 4, 8, 3, 3, 0, 7
Offset: 1

Views

Author

Stefano Spezia, Oct 27 2024

Keywords

Examples

			5.344796660577975567125921862534413199507254626...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 33.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi*Csc[Pi/5],10,100][[1]]

Formula

Equals Gamma(1/5)*Gamma(4/5) = 2*Pi*sqrt(5)*sqrt(2+phi)/5 (see Finch).
Equals Integral_{x=0..oo} log(1 + x^(-5)) dx (see Shamos).
Equals sqrt(2*(1 + 1/sqrt(5)))*Pi.
Equals 10 * Sum_{n>=1} (-1)^(n+1)/A345019(n). - Amiram Eldar, Oct 27 2024
Equals 5*A352324. - Hugo Pfoertner, Oct 28 2024
Previous Showing 11-20 of 20 results.