A136493
Triangle of coefficients of characteristic polynomials of symmetrical pentadiagonal matrices of the type (1,-1,1,-1,1).
Original entry on oeis.org
1, -1, 1, 1, -2, 0, -1, 3, 0, 0, 1, -4, 1, 2, 0, -1, 5, -3, -5, 1, 1, 1, -6, 6, 8, -5, -2, 1, -1, 7, -10, -10, 14, 4, -4, 0, 1, -8, 15, 10, -29, -4, 12, 0, 0, -1, 9, -21, -7, 50, -4, -30, 4, 4, 0, 1, -10, 28, 0, -76, 28, 61, -20, -15, 2, 1
Offset: 0
Triangle begins:
1;
-1, 1;
1, -2, 0;
-1, 3, 0, 0;
1, -4, 1, 2, 0;
-1, 5, -3, -5, 1, 1;
1, -6, 6, 8, -5, -2, 1;
-1, 7, -10, -10, 14, 4, -4, 0;
1, -8, 15, 10, -29, -4, 12, 0, 0;
-1, 9, -21, -7, 50, -4, -30, 4, 4, 0;
1, -10, 28, 0, -76, 28, 61, -20, -15, 2, 1;
- Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 1978, ISBN 0070511586, see p. 256.
-
T[n_, m_]:= Piecewise[{{-1, 1+m==n || m==1+n}, {1, 2+m==n || m==n || m==2+n}}];
MO[d_]:= Table[T[n, m], {n,d}, {m,d}];
CL[n_]:= CoefficientList[CharacteristicPolynomial[MO[n], x], x];
Join[{{1}}, Table[Reverse[CL[n]], {n,10}]]//Flatten
(* For the signature of A124698 added by Georg Fischer, Mar 29 2021 : *)
Reverse[CoefficientList[CharacteristicPolynomial[{{1,-1,0,0,0}, {-1, 1,-1,0,0}, {0,-1,1,-1,0}, {0,0,-1,1,-1}, {0,0,0,-1,1}}, x], x]]
A327242
Expansion of Sum_{k>=1} tau(k) * x^k / (1 + x^k)^2, where tau = A000005.
Original entry on oeis.org
1, 0, 5, -5, 7, 0, 9, -18, 18, 0, 13, -25, 15, 0, 35, -47, 19, 0, 21, -35, 45, 0, 25, -90, 38, 0, 58, -45, 31, 0, 33, -108, 65, 0, 63, -90, 39, 0, 75, -126, 43, 0, 45, -65, 126, 0, 49, -235, 66, 0, 95, -75, 55, 0, 91, -162, 105, 0, 61, -175, 63, 0, 162, -233, 105
Offset: 1
-
[&+[(-1)^(d+1)*d*#Divisors(n div d):d in Divisors(n)]:n in [1..65]]; // Marius A. Burtea, Sep 14 2019
-
nmax = 65; CoefficientList[Series[Sum[DivisorSigma[0, k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
a[n_] := Sum[(-1)^(d + 1) d DivisorSigma[0, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]
f[p_, e_] := (p^(e + 2) - (e + 2)*p + e + 1)/(p-1)^2; f[2, e_] := 3*e + 5 - 2^(e+2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 25 2025 *)
-
a(n) = {sumdiv(n, d, (-1)^(d + 1) * d * numdiv(n/d))} \\ Andrew Howroyd, Sep 14 2019
A333303
T(n, k) = [x^k] (-2)^n*(B(n, x/2) - B(n, (x+1)/2)) where B(n, x) are the Bernoulli polynomials. Triangle read by rows, for 0 <= k <= n.
Original entry on oeis.org
0, 1, 1, -2, 0, -3, 3, -1, 0, 6, -4, 0, 5, 0, -10, 5, 3, 0, -15, 0, 15, -6, 0, -21, 0, 35, 0, -21, 7, -17, 0, 84, 0, -70, 0, 28, -8, 0, 153, 0, -252, 0, 126, 0, -36, 9, 155, 0, -765, 0, 630, 0, -210, 0, 45, -10, 0, -1705, 0, 2805, 0, -1386, 0, 330, 0, -55, 11
Offset: 0
B*(8, z) = 1024*(Zeta(-7, (z+1)/2) - Zeta(-7, z/2))
= -17 + 84*z^2 - 70*z^4 + 28*z^6 - 8*z^7.
Triangle starts:
[ 0] [ 0]
[ 1] [ 1]
[ 2] [ 1, -2]
[ 3] [ 0, -3, 3]
[ 4] [ -1, 0, 6, -4]
[ 5] [ 0, 5, 0, -10, 5]
[ 6] [ 3, 0, -15, 0, 15, -6]
[ 7] [ 0, -21, 0, 35, 0, -21, 7]
[ 8] [-17, 0, 84, 0, -70, 0, 28, -8]
[ 9] [ 0, 153, 0, -252, 0, 126, 0, -36, 9]
[10] [155, 0, -765, 0, 630, 0, -210, 0, 45, -10]
[11] [ 0, -1705, 0, 2805, 0, -1386, 0, 330, 0, -55, 11]
-
B[n_, x_] := (-2)^n (BernoulliB[n, x/2] - BernoulliB[n, (x + 1)/2]);
Prepend[Table[CoefficientList[B[n, x], x], {n, 1, 11}], 0] // Flatten
-
def Bstar(n,x):
return (-2)^n*(bernoulli_polynomial(x/2,n) - bernoulli_polynomial((x+1)/2,n))
print(flatten([expand(Bstar(n, x)).list() for n in (0..11)]))
A341101
T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling1(n - k + j, j)*(-1)^(n-k). Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 2, 6, 8, 0, 6, 19, 24, 16, 0, 24, 80, 110, 80, 32, 0, 120, 418, 615, 500, 240, 64, 0, 720, 2604, 4046, 3570, 1960, 672, 128, 0, 5040, 18828, 30604, 28777, 17360, 6944, 1792, 256, 0, 40320, 154944, 261656, 259056, 167874, 74592, 22848, 4608, 512
Offset: 0
Triangle starts:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 0 2
2: 0 1 4
3: 0 2 6 8
4: 0 6 19 24 16
5: 0 24 80 110 80 32
6: 0 120 418 615 500 240 64
7: 0 720 2604 4046 3570 1960 672 128
8: 0 5040 18828 30604 28777 17360 6944 1792 256
- Özmen, N., Erkuş-Duman, E. (2019). On the Generalized Sylvester Polynomials. In: Lindahl, K., Lindström, T., Rodino, L., Toft, J., Wahlberg, P. (eds) Analysis, Probability, Applications, and Computation. Trends in Mathematics. Birkhäuser, Cham. See page 48.
Alternating row sums: (-1)^n*(n+1) =
A181983(n+1).
-
T := (n, k) -> add(binomial(n, k - j)*Stirling1(n - k + j, j)*(-1)^(n-k), j=0..k):
seq(print(seq(T(n,k), k = 0..n)), n = 0..9);
# Alternative:
SP := (n, x) -> (x^n)*hypergeom([-n, x], [], -1/x):
row := n -> seq(coeff(simplify(SP(n, x)), x, k), k = 0..n):
for n from 0 to 8 do row(n) od; # Peter Luschny, Nov 23 2022
-
T[ n_, k_] := If[ n<0, 0, n! * Coefficient[ SeriesCoefficient[ E^(x * z) / (1 - z)^x, {z, 0, n}], x, k]]; (* Michael Somos, Nov 23 2022 *)
-
T(n, k) = sum(j=0, k, binomial(n, k-j)*stirling(n-k+j, j, 1)*(-1)^(n-k)); \\ Michel Marcus, Feb 11 2021
-
{T(n, k) = if( n<0, 0, n! * polcoeff( polcoeff( exp(x*y) / (1 - x + x * O(x^n))^y, n), k))}; /* Michael Somos, Nov 23 2022 */
-
from math import factorial
from sympy import Symbol, Poly
x = Symbol("x")
def Coeffs(p) -> list[int]:
return list(reversed(Poly(p, x).all_coeffs()))
def L(n, m, x):
if n == 0:
return 1
if n == 1:
return 1 - m - 2*x
return ((2 * (n - x) - m - 1) * L(n - 1, m, x) / n
- (n - x - m - 1) * L(n - 2, m, x) / n)
def Sylvester(n):
return (-1)**n * factorial(n) * L(n, n, x)
for n in range(7):
print(Coeffs(Sylvester(n))) # Peter Luschny, Dec 13 2022
A382865
Bitwise XOR of all integers between n and 2n (endpoints included).
Original entry on oeis.org
0, 3, 5, 4, 8, 15, 13, 8, 16, 27, 21, 28, 24, 23, 29, 16, 32, 51, 37, 52, 40, 63, 45, 56, 48, 43, 53, 44, 56, 39, 61, 32, 64, 99, 69, 100, 72, 111, 77, 104, 80, 123, 85, 124, 88, 119, 93, 112, 96, 83, 101, 84, 104, 95, 109, 88, 112, 75, 117, 76, 120, 71, 125, 64, 128, 195
Offset: 0
a(3) = 3 XOR 4 XOR 5 XOR 6 = 4, in binary representation is: ((011 XOR 100) XOR 101) XOR 110 = (111 XOR 101) XOR 110 = 010 XOR 110 = 100 (4 in decimal).
-
a:= proc(n) option remember; uses Bits; `if`(n=0, 0,
Xor(Xor(Xor(a(n-1), n-1), 2*n-1), 2*n))
end:
seq(a(n), n=0..65); # Alois P. Heinz, May 26 2025
-
a[n_] = BitXor[BitOr[n-1, 2] - (-1)^n*(n-1), 4*n]/2; Table[a[n],{n,0, 65}]
-
a(n) = my(b=n); for (i=n+1, 2*n, b = bitxor(b, i)); b; \\ Michel Marcus, May 25 2025
-
def A382865(n): return [0, n, 1, n-1][n%4] ^ (2*n) # Karl-Heinz Hofmann, May 26 2025
A297477
Triangle read by rows: T(n, k) gives the coefficients of x^k of the characteristic polynomial P(n, x) of the n X n matrix M with entries M(i, j) = 1 if i = 1 or j = 1, -1 if i = j > 1, and 0 otherwise. T(0, 0) := 0.
Original entry on oeis.org
0, 1, -1, -2, 0, 1, 3, 3, -1, -1, -4, -8, -3, 2, 1, 5, 15, 14, 2, -3, -1, -6, -24, -35, -20, 0, 4, 1, 7, 35, 69, 65, 25, -3, -5, -1, -8, -48, -119, -154, -105, -28, 7, 6, 1, 9, 63, 188, 308, 294, 154, 28, -12, -7, -1, -10, -80, -279, -552, -672, -504, -210, -24, 18, 8, 1
Offset: 0
The matrix for these characteristic polynomials starts:
{
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, -1, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, -1, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 0, -1, 0, 0, 0, 0, 0, 0},
{1, 0, 0, 0, -1, 0, 0, 0, 0, 0},
{1, 0, 0, 0, 0, -1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, -1, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 0, -1, 0, 0},
{1, 0, 0, 0, 0, 0, 0, 0, -1, 0},
{1, 0, 0, 0, 0, 0, 0, 0, 0, -1}
}
----------------------------------------------------------------------
The table T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 1 -1
2: -2 0 1
3: 3 3 -1 -1
4: -4 -8 -3 2 1
5; 5 15 14 2 -3 -1
6: -6 -24 -35 -20 0 4 1
7: 7 35 69 65 25 -3 -5 -1
8: -8 -48 -119 -154 -105 -28 7 6 1
9: 9 63 188 308 294 154 28 -12 -7 -1
10: -10 -80 -279 -552 -672 -504 -210 -24 18 8 1
... reformatted by _Wolfdieter Lang_, Feb 02 2018.
-
f:= proc(n) local M,P,lambda,k;
M:= Matrix(n,n, proc(i,j) if i=1 or j=1 then 1 elif i=j then -1 else 0 fi end proc);
P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(M,lambda);
seq(coeff(P,lambda,k),k=0..n)
end proc:
f(0):= 0:
for n from 0 to 10 do f(n) od; # Robert Israel, Feb 02 2018
-
Clear[A, x, t];
Table[t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] :=
t[n, k] =
If[n < k,
If[And[n > 1, k > 1], Sum[-t[k - i, n], {i, 1, k - 1}], 0],
If[And[n > 1, k > 1], Sum[-t[n - i, k], {i, 1, n - 1}], 0]];
A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}];
Flatten[%]
A346083
Triangle, read by rows, defined by recurrence: T(n,k) = T(n-1,k-1) + (-1)^k * (2 * k + 1) * T(n-1,k) for 0 < k < n with initial values T(n,0) = T(n,n) = 1 for n >= 0 and T(i,j) = 0 if j < 0 or j > i.
Original entry on oeis.org
1, 1, 1, 1, -2, 1, 1, 7, 3, 1, 1, -20, 22, -4, 1, 1, 61, 90, 50, 5, 1, 1, -182, 511, -260, 95, -6, 1, 1, 547, 2373, 2331, 595, 161, 7, 1, 1, -1640, 12412, -13944, 7686, -1176, 252, -8, 1, 1, 4921, 60420, 110020, 55230, 20622, 2100, 372, 9, 1, 1, -14762, 307021, -709720, 607090, -171612, 47922, -3480, 525, -10, 1
Offset: 0
The triangle T(n,k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
=============================================================
0 : 1
1 : 1 1
2 : 1 -2 1
3 : 1 7 3 1
4 : 1 -20 22 -4 1
5 : 1 61 90 50 5 1
6 : 1 -182 511 -260 95 -6 1
7 : 1 547 2373 2331 595 161 7 1
8 : 1 -1640 12412 -13944 7686 -1176 252 -8 1
9 : 1 4921 60420 110020 55230 20622 2100 372 9 1
etc.
-
from functools import cache
@cache
def T(n, k):
if k == 0 or k == n: return 1
return T(n-1, k-1) + (-1)**k*(2*k + 1)*T(n-1, k)
for n in range(10):
print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jul 22 2021
A348763
Decimal expansion of Sum_{n>=1} ((-1)^(n+1)*n)/(n+1)^2.
Original entry on oeis.org
1, 2, 9, 3, 1, 9, 8, 5, 2, 8, 6, 4, 1, 6, 7, 9, 0, 8, 8, 1, 8, 9, 7, 5, 4, 6, 1, 8, 6, 4, 8, 3, 6, 0, 2, 6, 5, 3, 3, 9, 7, 4, 8, 1, 6, 2, 4, 3, 1, 4, 3, 9, 6, 4, 7, 4, 7, 0, 9, 9, 1, 0, 5, 1, 9, 1, 6, 1, 0, 1, 1, 3, 2, 3, 1, 9, 0, 5, 7, 2, 1, 3, 1, 0, 9
Offset: 0
0.12931985286416790881897546186483602653397481624314396474709910519161011...
-
RealDigits[Pi^2/12 - Log[2], 10, 100][[1]] (* Amiram Eldar, Nov 30 2021 *)
-
-sumalt(n=1, (-1)^n*n/(n+1)^2) \\ Charles R Greathouse IV, Nov 01 2021
-
Pi^2/12-log(2) \\ Charles R Greathouse IV, Nov 01 2021
-
from scipy.special import zeta
from math import log
int(''.join(n for n in list(str(zeta(2)/2-log(2)))[2:-2]))
-
int(str(sum((-1)**(n+1)*n/(n+1)**2 for n in range(1,5000000)))[2:-2])
-
(pi^2/12-log(2)).n(digits=100)
Comments