cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A136493 Triangle of coefficients of characteristic polynomials of symmetrical pentadiagonal matrices of the type (1,-1,1,-1,1).

Original entry on oeis.org

1, -1, 1, 1, -2, 0, -1, 3, 0, 0, 1, -4, 1, 2, 0, -1, 5, -3, -5, 1, 1, 1, -6, 6, 8, -5, -2, 1, -1, 7, -10, -10, 14, 4, -4, 0, 1, -8, 15, 10, -29, -4, 12, 0, 0, -1, 9, -21, -7, 50, -4, -30, 4, 4, 0, 1, -10, 28, 0, -76, 28, 61, -20, -15, 2, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 21 2008

Keywords

Comments

From Georg Fischer, Mar 29 2021: (Start)
The pentadiagonal matrices have 1 in the main diagonal, -1 in the first lower and upper diagonal, 1 in the second lower and upper diagonal, and 0 otherwise.
The linear recurrences that yield A124805, A124806, A124807 and similar can be derived from the rows of this triangle (the first element of a row must be removed and multiplied onto the remaining elements).
This observation extends to other sequences. For example the linear recurrence signature (5,-6,2,4,0) of A124698 "Number of base 5 circular n-digit numbers with adjacent digits differing by 1 or less" can be derived from the coefficients of the characteristic polynomial of a tridiagonal (type -1,1,-1) 5 X 5 matrix.
(End)

Examples

			Triangle begins:
   1;
  -1,   1;
   1,  -2,   0;
  -1,   3,   0,   0;
   1,  -4,   1,   2,   0;
  -1,   5,  -3,  -5,   1,  1;
   1,  -6,   6,   8,  -5, -2,   1;
  -1,   7, -10, -10,  14,  4,  -4,   0;
   1,  -8,  15,  10, -29, -4,  12,   0,   0;
  -1,   9, -21,  -7,  50, -4, -30,   4,   4,  0;
   1, -10,  28,   0, -76, 28,  61, -20, -15,  2,  1;
		

References

  • Anthony Ralston and Philip Rabinowitz, A First Course in Numerical Analysis, 1978, ISBN 0070511586, see p. 256.

Crossrefs

Programs

  • Mathematica
    T[n_, m_]:= Piecewise[{{-1, 1+m==n || m==1+n}, {1, 2+m==n || m==n || m==2+n}}];
    MO[d_]:= Table[T[n, m], {n,d}, {m,d}];
    CL[n_]:= CoefficientList[CharacteristicPolynomial[MO[n], x], x];
    Join[{{1}}, Table[Reverse[CL[n]], {n,10}]]//Flatten
    (* For the signature of A124698 added by Georg Fischer, Mar 29 2021 : *)
    Reverse[CoefficientList[CharacteristicPolynomial[{{1,-1,0,0,0}, {-1, 1,-1,0,0}, {0,-1,1,-1,0}, {0,0,-1,1,-1}, {0,0,0,-1,1}}, x], x]]

Formula

Sum_{k=1..n} T(n, k) = (-1)^(n mod 3) * A087509(n+1) + [n=1].
From G. C. Greubel, Aug 01 2023: (Start)
T(n, n) = A011658(n+2).
T(n, 1) = (-1)^(n-1).
T(n, 2) = A181983(n-1).
T(n, 3) = (-1)^(n-3)*A161680(n-3). (End)

Extensions

Edited by Georg Fischer, Mar 29 2021

A327242 Expansion of Sum_{k>=1} tau(k) * x^k / (1 + x^k)^2, where tau = A000005.

Original entry on oeis.org

1, 0, 5, -5, 7, 0, 9, -18, 18, 0, 13, -25, 15, 0, 35, -47, 19, 0, 21, -35, 45, 0, 25, -90, 38, 0, 58, -45, 31, 0, 33, -108, 65, 0, 63, -90, 39, 0, 75, -126, 43, 0, 45, -65, 126, 0, 49, -235, 66, 0, 95, -75, 55, 0, 91, -162, 105, 0, 61, -175, 63, 0, 162, -233, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Comments

Inverse Moebius transform of A002129.
Dirichlet convolution of A000005 with A181983.

Crossrefs

Cf. A000005, A002129, A007429, A008586 (positions of negative terms), A016825 (positions of 0's), A181983, A288417, A288571.

Programs

  • Magma
    [&+[(-1)^(d+1)*d*#Divisors(n div d):d in Divisors(n)]:n in [1..65]]; // Marius A. Burtea, Sep 14 2019
  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[0, k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Sum[(-1)^(d + 1) d DivisorSigma[0, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := (p^(e + 2) - (e + 2)*p + e + 1)/(p-1)^2; f[2, e_] := 3*e + 5 - 2^(e+2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, May 25 2025 *)
  • PARI
    a(n) = {sumdiv(n, d, (-1)^(d + 1) * d * numdiv(n/d))} \\ Andrew Howroyd, Sep 14 2019
    

Formula

a(n) = Sum_{d|n} A002129(d).
a(n) = Sum_{d|n} (-1)^(d + 1) * d * tau(n/d).
Multiplicative with a(2^e) = 3*e + 5 - 2^(e+2), and a(p^e) = (p^(e+2) - (e+2)*p +e + 1)/(p-1)^2 for an odd prime p. - Amiram Eldar, May 25 2025

A333303 T(n, k) = [x^k] (-2)^n*(B(n, x/2) - B(n, (x+1)/2)) where B(n, x) are the Bernoulli polynomials. Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, -2, 0, -3, 3, -1, 0, 6, -4, 0, 5, 0, -10, 5, 3, 0, -15, 0, 15, -6, 0, -21, 0, 35, 0, -21, 7, -17, 0, 84, 0, -70, 0, 28, -8, 0, 153, 0, -252, 0, 126, 0, -36, 9, 155, 0, -765, 0, 630, 0, -210, 0, 45, -10, 0, -1705, 0, 2805, 0, -1386, 0, 330, 0, -55, 11
Offset: 0

Views

Author

Peter Luschny, May 07 2020

Keywords

Comments

Can be seen as the Bernoulli counterpart of the Euler triangles A247453 and A109449.

Examples

			B*(8, z) = 1024*(Zeta(-7, (z+1)/2) - Zeta(-7, z/2))
         = -17 + 84*z^2 - 70*z^4 + 28*z^6 - 8*z^7.
Triangle starts:
[ 0] [  0]
[ 1] [  1]
[ 2] [  1,    -2]
[ 3] [  0,    -3,    3]
[ 4] [ -1,     0,    6,   -4]
[ 5] [  0,     5,    0,  -10,   5]
[ 6] [  3,     0,  -15,    0,  15,    -6]
[ 7] [  0,   -21,    0,   35,   0,   -21,    7]
[ 8] [-17,     0,   84,    0, -70,     0,   28,  -8]
[ 9] [  0,   153,    0, -252,   0,   126,    0, -36,  9]
[10] [155,     0, -765,    0, 630,     0, -210,   0, 45, -10]
[11] [  0, -1705,    0, 2805,   0, -1386,    0, 330,  0, -55, 11]
		

Crossrefs

Row sums are (-1)^n*A226158(n). Alternating row sums are A239977(n).
Cf. A181983, A247453, A109449, (A053382/A053383) Bernoulli polynomials.

Programs

  • Mathematica
    B[n_, x_] := (-2)^n (BernoulliB[n, x/2] - BernoulliB[n, (x + 1)/2]);
    Prepend[Table[CoefficientList[B[n, x], x], {n, 1, 11}], 0] // Flatten
  • SageMath
    def Bstar(n,x):
        return (-2)^n*(bernoulli_polynomial(x/2,n) - bernoulli_polynomial((x+1)/2,n))
    print(flatten([expand(Bstar(n, x)).list() for n in (0..11)]))

Formula

Let B*(n, x) denote the alternating Bernoulli rational polynomial functions defined by Z*(s, x) = Phi(-1, s, x) and B*(s, x) = -s Z*(1 - s, x). Here Phi(z, s, x) is the Hurwitz-Lerch transcendent defined as an analytic continuation of Sum_{k>=0} z^k/(k+x)^s. Then T(n, k) = (-1)^n [x^k] 2 B*(n, x).
T(n, 0) = 2*(2^n - 1)*Bernoulli(n, 1) = n*Euler(n - 1, 1) = -A226158(n).
Main diagonal is (-1)^(n+1)*n = A181983(n).

A341101 T(n, k) = Sum_{j=0..k} binomial(n, k - j)*Stirling1(n - k + j, j)*(-1)^(n-k). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 2, 6, 8, 0, 6, 19, 24, 16, 0, 24, 80, 110, 80, 32, 0, 120, 418, 615, 500, 240, 64, 0, 720, 2604, 4046, 3570, 1960, 672, 128, 0, 5040, 18828, 30604, 28777, 17360, 6944, 1792, 256, 0, 40320, 154944, 261656, 259056, 167874, 74592, 22848, 4608, 512
Offset: 0

Views

Author

Peter Luschny, Feb 09 2021

Keywords

Examples

			Triangle starts:
n\k  0     1     2     3     4     5     6     7     8 ...
0:   1
1:   0     2
2:   0     1     4
3:   0     2     6     8
4:   0     6    19    24    16
5:   0    24    80   110    80    32
6:   0   120   418   615   500   240    64
7:   0   720  2604  4046  3570  1960   672   128
8:   0  5040 18828 30604 28777 17360  6944  1792   256
		

Crossrefs

Alternating row sums: (-1)^n*(n+1) = A181983(n+1).
Cf. A000522 (row sums), A097204 (row sums - 2^n), A002627 (row sums - n!).

Programs

  • Maple
    T := (n, k) -> add(binomial(n, k - j)*Stirling1(n - k + j, j)*(-1)^(n-k), j=0..k):
    seq(print(seq(T(n,k), k = 0..n)), n = 0..9);
    # Alternative:
    SP := (n, x) -> (x^n)*hypergeom([-n, x], [], -1/x):
    row := n -> seq(coeff(simplify(SP(n, x)), x, k), k = 0..n):
    for n from 0 to 8 do row(n) od; # Peter Luschny, Nov 23 2022
  • Mathematica
    T[ n_, k_] := If[ n<0, 0, n! * Coefficient[ SeriesCoefficient[ E^(x * z) / (1 - z)^x, {z, 0, n}], x, k]]; (* Michael Somos, Nov 23 2022 *)
  • PARI
    T(n, k) = sum(j=0, k, binomial(n, k-j)*stirling(n-k+j, j, 1)*(-1)^(n-k)); \\ Michel Marcus, Feb 11 2021
    
  • PARI
    {T(n, k) = if( n<0, 0, n! * polcoeff( polcoeff( exp(x*y) / (1 - x + x * O(x^n))^y, n), k))}; /* Michael Somos, Nov 23 2022 */
    
  • Python
    from math import factorial
    from sympy import Symbol, Poly
    x = Symbol("x")
    def Coeffs(p) -> list[int]:
        return list(reversed(Poly(p, x).all_coeffs()))
    def L(n, m, x):
        if n == 0:
            return 1
        if n == 1:
            return 1 - m - 2*x
        return ((2 * (n  - x) - m - 1) * L(n - 1, m, x) / n
              - (n  - x - m - 1) * L(n - 2, m, x) / n)
    def Sylvester(n):
        return (-1)**n * factorial(n) * L(n, n, x)
    for n in range(7):
        print(Coeffs(Sylvester(n))) # Peter Luschny, Dec 13 2022

Formula

Sum_{k=0..n-1} T(n, k) = Sum_{k=0..n} binomial(n, k)*(k! - 1) = A097204(n).
E.g.f. for row polynomials: P(x, z) := Sum_{k>=0} T(n, k) * x^n * z^k/k! = e^(x*z) / (1 - z)^x = 1 + (2*x) * z + (x + 4*x^2) * z^2/2! + ... - Michael Somos, Nov 23 2022
From Peter Luschny, Nov 24 2022: (Start)
T(n, k) = [x^k] (x^n)*hypergeom([-n, x], [], -1/x).
T(n, k) = [x^k] (-1)^n * n! * L(n, -x - n, x), where L(n, a, x) is the n-th generalized Laguerre polynomial. (End)

A382865 Bitwise XOR of all integers between n and 2n (endpoints included).

Original entry on oeis.org

0, 3, 5, 4, 8, 15, 13, 8, 16, 27, 21, 28, 24, 23, 29, 16, 32, 51, 37, 52, 40, 63, 45, 56, 48, 43, 53, 44, 56, 39, 61, 32, 64, 99, 69, 100, 72, 111, 77, 104, 80, 123, 85, 124, 88, 119, 93, 112, 96, 83, 101, 84, 104, 95, 109, 88, 112, 75, 117, 76, 120, 71, 125, 64, 128, 195
Offset: 0

Views

Author

Federico Provvedi, May 21 2025

Keywords

Examples

			a(3) = 3 XOR 4 XOR 5 XOR 6 = 4, in binary representation is: ((011 XOR 100) XOR 101) XOR 110 = (111 XOR 101) XOR 110 = 010 XOR 110 = 100 (4 in decimal).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; uses Bits; `if`(n=0, 0,
          Xor(Xor(Xor(a(n-1), n-1), 2*n-1), 2*n))
        end:
    seq(a(n), n=0..65);  # Alois P. Heinz, May 26 2025
  • Mathematica
    a[n_] = BitXor[BitOr[n-1, 2] - (-1)^n*(n-1), 4*n]/2; Table[a[n],{n,0, 65}]
  • PARI
    a(n) = my(b=n); for (i=n+1, 2*n, b = bitxor(b, i)); b; \\ Michel Marcus, May 25 2025
    
  • Python
    def A382865(n): return [0, n, 1, n-1][n%4] ^ (2*n) # Karl-Heinz Hofmann, May 26 2025

Formula

a(2n) = A047615(n+1), and for every integer k>1: a(n*2^k -1) = 2^k * A065621(n).
a(4n) = 8*n, a(4n+1) = 2*A114389(n+1) + 1, a(4n+2) = 8*n + 5, a(4n+3) = 4*A065621(n+1).
From Karl-Heinz Hofmann, May 27 2025: (Start)
For all n == 0 (mod 4) --> a(n) = A005843(n) = 2*n
For all n == 1 (mod 4) --> a(n) = A048724(n)
For all n == 2 (mod 4) --> a(n) = A005408(n) = 2*n + 1
For all n == 3 (mod 4) --> a(n) = A048724(n) - 1 (End)
a(n) = (1/2) * XOR(A174091(n-1) - A181983(n-1), 4*n). - Federico Provvedi, May 31 2025

A297477 Triangle read by rows: T(n, k) gives the coefficients of x^k of the characteristic polynomial P(n, x) of the n X n matrix M with entries M(i, j) = 1 if i = 1 or j = 1, -1 if i = j > 1, and 0 otherwise. T(0, 0) := 0.

Original entry on oeis.org

0, 1, -1, -2, 0, 1, 3, 3, -1, -1, -4, -8, -3, 2, 1, 5, 15, 14, 2, -3, -1, -6, -24, -35, -20, 0, 4, 1, 7, 35, 69, 65, 25, -3, -5, -1, -8, -48, -119, -154, -105, -28, 7, 6, 1, 9, 63, 188, 308, 294, 154, 28, -12, -7, -1, -10, -80, -279, -552, -672, -504, -210, -24, 18, 8, 1
Offset: 0

Views

Author

Mats Granvik, Dec 30 2017

Keywords

Comments

The norm of the matrix M appears to be sqrt(n), where with norm is meant the eigenvalue of the largest magnitude, negative or positive. Row sums appear to be A085750 [see below for the proof].
Also the coefficients of the characteristic polynomial of the matrix defined by the recurrence: A(n, k) = if n < k then if and(n > 1, k > 1) then Sum_{i=1..k-1} -A(k-i, n) else 0 else if and(n > 1, k > 1) then Sum_{i=1..n-1} -A(n-i, k) else 0.
By letting the upper summation indexes "k-1" and "n-1" in the recurrence above, change place with each other one gets the number theoretic matrix A191898, and it appears that the eigenvalue norm sqrt(n) of this matrix is a lower bound for the eigenvalue norm of matrix A191898 which in turn for n>10 appears to be close to A007917, the previous prime sequence. If the eigenvalue norm of matrix A191898 also can be proven to be less than n+1, then one could say that there is always a prime gap between sqrt(n) and n+1.
From Wolfdieter Lang, Feb 02 2018: (Start)
The characteristic polynomial P(n, x) = Det(M_n - x*1_n), with the n X n matrix M_n defined in the name and 1_n the n dimensional unit matrix, satisfies, after expanding the last row, the recurrence: P(n, x) = -z*P(n-1, x) + (-1)^(n-1)*z^(n-2), for n >= 2, and input P(1, x) = y, where y = 1-x and z = 1+x. The solution is P(n, x) = y*(-z)^(n-1) - (n-1)*(-z)^(n-2) = (-1)^n*(1 + x)^(n-2)*(x^2 - n), for n >= 1. After picking the coefficient of x^k this becomes the formula for T(n, k) given in the formula section.
The Determinant of M_n is P(n, 0) = T(n, 0) = (-1)^n*n = A181983(n).
The eigenvalues of M_n are +1 for n = 1 and for n >= 2 they are +sqrt(n), -sqrt(n), and n-2 times -1.
Therefore the spectral radius (absolute value of the maximal eigenvalue) is rho_n = sqrt(n), and the spectral norm of M_n (square root of the maximal eigenvalue of (M_n)^+ M_n) is also sqrt(n), for n >= 1. See the conjecture in the first comment above.
The square of the Frobenius norm (aka Hilbert-Schmidt norm) of M_n is max_{i,j=1..n} |M_n(i,j)|^2 = 3*n - 2 = A016777(n-1), for n >= 1.
The row sums are P(n, 1) = (-1)^(n-1)*(n-1)*2^(n-2) = A085750(n), for n >= 1, and for n=0 the row sum is 0. The alternating row sums are P(n, -1) = 2 for n=1, -1 for n = 2, and zero otherwise.
The column sequence (without leading zero) for k = 1 is (-1)^(n+1)*n*(n-2), for n >= 1, which is -A131386(n). For k = 2 it is (-1)^n*(1 - n*binomial(n-2, 2)) for n >= 2 which is (-1)^n*A110427(n-1). Other columns follow from the formula for T(n, k). (End)

Examples

			The matrix for these characteristic polynomials starts:
  {
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
  {1, -1, 0, 0, 0, 0, 0, 0, 0, 0},
  {1, 0, -1, 0, 0, 0, 0, 0, 0, 0},
  {1, 0, 0, -1, 0, 0, 0, 0, 0, 0},
  {1, 0, 0, 0, -1, 0, 0, 0, 0, 0},
  {1, 0, 0, 0, 0, -1, 0, 0, 0, 0},
  {1, 0, 0, 0, 0, 0, -1, 0, 0, 0},
  {1, 0, 0, 0, 0, 0, 0, -1, 0, 0},
  {1, 0, 0, 0, 0, 0, 0, 0, -1, 0},
  {1, 0, 0, 0, 0, 0, 0, 0, 0, -1}
  }
----------------------------------------------------------------------
The table T(n, k) begins:
  n\k   0   1    2    3    4    5    6   7   8   9  10 ...
  0:    0
  1:    1  -1
  2:   -2   0    1
  3:    3   3   -1   -1
  4:   -4  -8   -3    2    1
  5;    5  15   14    2   -3   -1
  6:   -6 -24  -35  -20    0    4    1
  7:    7  35   69   65   25   -3   -5  -1
  8:   -8 -48 -119 -154 -105  -28    7   6   1
  9:    9  63  188  308  294  154   28 -12  -7  -1
  10: -10 -80 -279 -552 -672 -504 -210 -24  18   8   1
  ... reformatted by _Wolfdieter Lang_, Feb 02 2018.
		

Crossrefs

Cf. A016777, A085750 (row sums), A067998, A110427 (column k=2), -A131386 (column k=1), A181983 (Det M_n), A191898.

Programs

  • Maple
    f:= proc(n) local M,P,lambda,k;
      M:= Matrix(n,n, proc(i,j) if i=1 or j=1 then 1 elif i=j then -1 else 0 fi end proc);
      P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(M,lambda);
      seq(coeff(P,lambda,k),k=0..n)
    end proc:
    f(0):= 0:
    for n from 0 to 10 do f(n) od; # Robert Israel, Feb 02 2018
  • Mathematica
    Clear[A, x, t];
    Table[t[n_, 1] = 1;
      t[1, k_] = 1;
      t[n_, k_] :=
       t[n, k] =
        If[n < k,
         If[And[n > 1, k > 1], Sum[-t[k - i, n], {i, 1, k - 1}], 0],
         If[And[n > 1, k > 1], Sum[-t[n - i, k], {i, 1, n - 1}], 0]];
      A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
      CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}];
    Flatten[%]

Formula

From Wolfdieter Lang, Feb 02 2018: (Start)
T(n, k) = [x*k] P(n, x), for n >= 1, with P(n, x) = Det(M_n - x*1_n), and the matrix M_n defined in the name (1_n is the n dimensional unit matrix). T(0, 0):= 0.
T(n, k) = (-1)^(n+1)*n for k = 0, (-1)^(n+1)*n*(n-2) for k = 1, and (-1)^n*(binomial(n-2, k-2) - n*binomial(n-2, k)) for k >= 2, with n >= 0 and 0 <= k <= n. T(n, k) = 0 for k > n. (End)

Extensions

Edited by Wolfdieter Lang, Feb 02 2018

A346083 Triangle, read by rows, defined by recurrence: T(n,k) = T(n-1,k-1) + (-1)^k * (2 * k + 1) * T(n-1,k) for 0 < k < n with initial values T(n,0) = T(n,n) = 1 for n >= 0 and T(i,j) = 0 if j < 0 or j > i.

Original entry on oeis.org

1, 1, 1, 1, -2, 1, 1, 7, 3, 1, 1, -20, 22, -4, 1, 1, 61, 90, 50, 5, 1, 1, -182, 511, -260, 95, -6, 1, 1, 547, 2373, 2331, 595, 161, 7, 1, 1, -1640, 12412, -13944, 7686, -1176, 252, -8, 1, 1, 4921, 60420, 110020, 55230, 20622, 2100, 372, 9, 1, 1, -14762, 307021, -709720, 607090, -171612, 47922, -3480, 525, -10, 1
Offset: 0

Views

Author

Werner Schulte, Jul 04 2021

Keywords

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n\k :  0      1      2       3      4      5     6    7  8  9
=============================================================
  0 :  1
  1 :  1      1
  2 :  1     -2      1
  3 :  1      7      3       1
  4 :  1    -20     22      -4      1
  5 :  1     61     90      50      5      1
  6 :  1   -182    511    -260     95     -6     1
  7 :  1    547   2373    2331    595    161     7    1
  8 :  1  -1640  12412  -13944   7686  -1176   252   -8  1
  9 :  1   4921  60420  110020  55230  20622  2100  372  9  1
  etc.
		

Crossrefs

Cf. A000012 (column 0 and main diagonal), A014983 (column 1), A181983 (1st subdiagonal), A002412 (2nd subdiagonal), A264851 (3rd subdiagonal without signs).
Cf. A051159.

Programs

  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k == 0 or k == n: return 1
        return T(n-1, k-1) + (-1)**k*(2*k + 1)*T(n-1, k)
    for n in range(10):
        print([T(n, k) for k in range(n+1)]) # Peter Luschny, Jul 22 2021

Formula

G.f. of column k >= 0: col(t,k) = Sum_{n >= k} T(n,k) * t^n = t^k / (Product_{i=0..k} (1 - (-1)^i * (2 * i + 1) * t)), i.e., col(t,k) = col(t,k-1) * t / (1 - (-1)^k * (2 * k + 1) * t) for k > 0.
Matrix inverse M = T^(-1) has row polynomials p(n,x) = Sum_{k=0..n} M(n,k) * x^k = Product_{i=1..n} (x + (-1)^i * (2 * i - 1)) for n >= 0 and empty product 1, i.e., p(n,x) = p(n-1,x) * (x + (-1)^n * (2 * n - 1)) for n > 0 with initial value p(0,x) = 1.
Conjecture: E.g.f. of column k >= 0: Sum_{n >= k} T(n,k) * t^n / (n!) = (Sum_{i=0..k} (-1)^(i * (i + 1 ) / 2) * binomial(k,floor((k - i) / 2)) * exp((-1)^i * (2 * i + 1) * t)) * (-1)^(k * (k - 1) / 2) / (4^k * (k!)), i.e., T(n,k) = (Sum_{i=0..k} (-1)^(i * (i + 1) / 2) * binomial(k,floor((k - i) / 2)) * ((-1)^i * (2 * i + 1))^n) * (-1)^(k * (k - 1) / 2) / (4^k * (k!)) for 0 <= k <= n.
Conjecture: E.g.f. of column k >= 0: Sum_{n >= k} T(n,k) * t^n / (n!) = exp(t) * (exp(4*t) - 1)^k / (4^k * (k!) * exp(4*t*floor((k+1)/2))), i.e., T(n,k) = (Sum_{i=0..k} (-1)^i * binomial(k,i) *(1 + 4*i - 4*floor((k+1)/2))^n) * (-1)^k / (4^k * (k!)) for 0 <= k <= n. Proved by Burkhard Hackmann and Werner Schulte (distinction of two cases: odd k, even k). - Werner Schulte, Aug 03 2021

A348763 Decimal expansion of Sum_{n>=1} ((-1)^(n+1)*n)/(n+1)^2.

Original entry on oeis.org

1, 2, 9, 3, 1, 9, 8, 5, 2, 8, 6, 4, 1, 6, 7, 9, 0, 8, 8, 1, 8, 9, 7, 5, 4, 6, 1, 8, 6, 4, 8, 3, 6, 0, 2, 6, 5, 3, 3, 9, 7, 4, 8, 1, 6, 2, 4, 3, 1, 4, 3, 9, 6, 4, 7, 4, 7, 0, 9, 9, 1, 0, 5, 1, 9, 1, 6, 1, 0, 1, 1, 3, 2, 3, 1, 9, 0, 5, 7, 2, 1, 3, 1, 0, 9
Offset: 0

Views

Author

Dumitru Damian, Oct 31 2021

Keywords

Examples

			0.12931985286416790881897546186483602653397481624314396474709910519161011...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/12 - Log[2], 10, 100][[1]] (* Amiram Eldar, Nov 30 2021 *)
  • PARI
    -sumalt(n=1, (-1)^n*n/(n+1)^2) \\ Charles R Greathouse IV, Nov 01 2021
    
  • PARI
    Pi^2/12-log(2) \\ Charles R Greathouse IV, Nov 01 2021
    
  • Python
    from scipy.special import zeta
    from math import log
    int(''.join(n for n in list(str(zeta(2)/2-log(2)))[2:-2]))
    
  • Python
    int(str(sum((-1)**(n+1)*n/(n+1)**2 for n in range(1,5000000)))[2:-2])
  • SageMath
    (pi^2/12-log(2)).n(digits=100)
    

Formula

Equals Pi^2/12-log(2).
Equals Sum_{k>=2} (zeta(k)-zeta(k+1))/2^k. - Amiram Eldar, Mar 20 2022
Equals Integral_{x >= 0} x/(1 + exp(x))^2 dx = (1/2) * Integral_{x >= 0} x*(x - 2)*exp(x)/(1 + exp(x))^2 dx . - Peter Bala, Apr 26 2025
Previous Showing 21-28 of 28 results.