cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A005169 Number of fountains of n coins.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, 234, 406, 704, 1222, 2120, 3679, 6385, 11081, 19232, 33379, 57933, 100550, 174519, 302903, 525734, 912493, 1583775, 2748893, 4771144, 8281088, 14373165, 24946955, 43299485, 75153286, 130440740, 226401112, 392955956, 682038999, 1183789679, 2054659669, 3566196321, 6189714276
Offset: 0

Views

Author

Keywords

Comments

A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row.
Also the number of Dyck paths for which the sum of the heights of the vertices that terminate an upstep (i.e., peaks and doublerises) is n. Example: a(4)=3 because we have UDUUDD, UUDDUD and UDUDUDUD. - Emeric Deutsch, Mar 22 2008
Also the number of ordered trees with path length n (follows from previous comment via a standard bijection). - Emeric Deutsch, Mar 22 2008
Probably first studied by Jim Propp (unpublished).
Number of compositions of n with c(1) = 1 and c(i+1) <= c(i) + 1. (Slide each row right 1/2 step relative to the row below, and count the columns.) - Franklin T. Adams-Watters, Nov 24 2009
With the additional requirement for weak unimodality one obtains A001524. - Joerg Arndt, Dec 09 2012

Examples

			An example of a fountain with 19 coins:
... O . O O
.. O O O O O O . O
. O O O O O O O O O
From _Peter Bala_, Dec 26 2012: (Start)
F(1/10) = Sum_{n >= 0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(8 + 1/(1 + 1/(8 + 1/(1 + 1/(98 + 1/(1 + 1/(98 + 1/(1 + 1/(998 + 1/(1 + 1/(998 + 1/(1 + ...)))))))))))).
F(-1/10) = Sum_{n >= 0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(1 + 1/(9 + 1/(99 + 1/(1 + 1/(99 + 1/(999 + 1/(1 + 1/(999 + 1/(9999 + 1/(1 + ...)))))))))))).
(End)
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001524, A192728, A192729, A192730, A111317, A143951, A285903, A226999 (inverse Euler transform), A291148 (convolution inverse).
First column of A168396. - Franklin T. Adams-Watters, Nov 24 2009
Diagonal of A185646.
Row sums of A047998. Column sums of A138158. - Emeric Deutsch, Mar 22 2008

Programs

  • Haskell
    a005169 0 = 1
    a005169 n = a168396 n 1  -- Reinhard Zumkeller, Sep 13 2013; corrected by R. J. Mathar, Sep 16 2013
  • Maple
    P[0]:=1: for n to 40 do P[n]:=sort(expand(t*(sum(P[j]*P[n-j-1]*t^(n-j-1),j= 0..n-1)))) end do: F:=sort(sum(P[k],k=0..40)): seq(coeff(F,t,j),j=0..36); # Emeric Deutsch, Mar 22 2008
    # second Maple program:
    A005169_G:= proc(x,NK); Digits:=250; Q2:=1;
            for k from NK by -1 to 0 do  Q1:=1-x^k/Q2; Q2:=Q1; od;
            Q3:=Q2; S:=1-Q3;
    end:
    series(A005169_G(x, 20), x, 21); # Sergei N. Gladkovskii, Dec 18 2011
  • Mathematica
    m = 36; p[0] = 1; p[n_] := p[n] = Expand[t*Sum[p[j]*p[n-j-1]*t^(n-j-1), {j, 0, n-1}]]; f[t_] = Sum[p[k], {k, 0, m}]; CoefficientList[Series[f[t], {t, 0, m}], t] (* Jean-François Alcover, Jun 21 2011, after Emeric Deutsch *)
    max = 43; Series[1-Fold[Function[1-x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Sep 16 2014 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j], {j, 1, Min[i+1, n]}]];
    c[n_] :=  b[n, 0] - b[n-1, 0];
    c /@ Range[0, 50] // Accumulate  (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz in A289080 *)
  • PARI
    /* using the g.f. from p. L1278 of the Glasser, Privman, Svrakic paper */
    N=30;  x='x+O('x^N);
    P(k)=sum(n=0,N, (-1)^n*x^(n*(n+1+k))/prod(j=1,n,1-x^j));
    G=1+x*P(1)/( (1-x)*P(1)-x^2*P(2) );
    Vec(G) /* Joerg Arndt, Feb 10 2011 */
    
  • PARI
    /* As a continued fraction: */
    {a(n)=local(A=1+x,CF);CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*CF+x*O(x^n));A=CF);polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    /* By the Rogers-Ramanujan continued fraction identity: */
    {a(n)=local(A=1+x,P,Q);
    P=sum(m=0,sqrtint(n),(-1)^m*x^(m*(m+1))/prod(k=1,m,1-x^k));
    Q=sum(m=0,sqrtint(n),(-1)^m*x^(m^2)/prod(k=1,m,1-x^k));
    A=P/(Q+x*O(x^n));polcoeff(A,n)}  /* Paul D. Hanna */
    

Formula

A005169(n) = f(n, 1), where f(n, p) = 0 if p > n, 1 if p = n, Sum(1 <= q <= p+1; f(n-p, q)) if p < n. f=A168396.
G.f.: F(t) = Sum_{k>=0} P[k], where P[0]=1, P[n] = t*Sum_{j= 0..n-1} P[j]*P[n-j-1]*t^(n-j-1) for n >= 1. - Emeric Deutsch, Mar 22 2008
G.f.: 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(...)))))) [given on the first page of the Odlyzko/Wilf reference]. - Joerg Arndt, Mar 08 2011
G.f.: 1/G(0), where G(k)= 1 - x^(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
G.f.: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product_{k=1..n} (1-x^k),
due to the Rogers-Ramanujan continued fraction identity. - Paul D. Hanna, Jul 08 2011
From Peter Bala, Dec 26 2012: (Start)
Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 3, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-2 + 1/(1 + 1/(n-2 + 1/(1 + 1/(n^2-2 + 1/(1 + 1/(n^2-2 + 1/(1 + ...)))))))), while for n >= 2, F(-1/n) has the simple continued fraction expansion 1/(1 + 1/(n-1 + 1/(1 + 1/(n-1 + 1/(n^2-1 + 1/(1 + 1/(n^2-1 + 1/(n^3-1 + 1/(1 + ...))))))))). Examples are given below. Cf. A111317 and A143951.
(End)
a(n) = c * x^(-n) + O((5/3)^n), where c = 0.312363324596741... and x = A347901 = 0.576148769142756... is the lowest root of the equation Q(x) = 0, Q(x) see above (Odlyzko & Wilf 1988). - Vaclav Kotesovec, Jul 18 2013, updated Sep 24 2020
G.f.: G(0), where G(k)= 1 - x^(k+1)/(x^(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
G.f.: 1 - 1/x + 1/(x*W(0)), where W(k)= 1 - x^(2*k+2)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013

Extensions

More terms from David W. Wilson, Apr 30 2001

A173173 a(n) = ceiling(Fibonacci(n)/2).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 45, 72, 117, 189, 305, 494, 799, 1292, 2091, 3383, 5473, 8856, 14329, 23184, 37513, 60697, 98209, 158906, 257115, 416020, 673135, 1089155, 1762289, 2851444, 4613733, 7465176, 12078909, 19544085, 31622993, 51167078, 82790071
Offset: 0

Views

Author

Roger L. Bagula, Nov 22 2010

Keywords

Comments

Also the independence number of the n-Fibonacci cube graph. - Eric W. Weisstein, Sep 06 2017
Also the edge cover number of the (n-2)-Fibonacci cube graph. - Eric W. Weisstein, Dec 26 2017
Also the calque covering number of the (n-2)-Fibonacci cube graph. - Eric W. Weisstein, Apr 20 2019

Crossrefs

Column m=3 of A185646.

Programs

  • Magma
    [Fibonacci(n) - Floor(Fibonacci(n)/2): n in [0..50]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    with(combinat,fibonacci): seq(ceil(fibonacci(n)/2),n=0..33) # Mircea Merca, Jan 04 2010
  • Mathematica
    Table[Fibonacci[n] - Floor[Fibonacci[n]/2], {n, 0, 40}] (* Harvey P. Dale, Jun 09 2013 *)
    (* Start from Eric W. Weisstein, Sep 06 2017 *)
    Table[Ceiling[Fibonacci[n]/2], {n, 0, 20}]
    Ceiling[Fibonacci[Range[0, 20]]/2]
    LinearRecurrence[{1, 1, 1, -1, -1}, {1, 2, 3, 4, 7}, 20]
    CoefficientList[Series[(1 + x - 2 x^3 - x^4)/(1 - x - x^2 - x^3 + x^4 + x^5), {x, 0, 20}], x]
    (* End *)
  • PARI
    /* Continued Fraction: */
    {a(n)=my(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+4)) *CF +x*O(x^n) )); polcoeff(x*CF, n)} \\ Paul D. Hanna, Jul 08 2013
    
  • PARI
    {a(n)=polcoeff( x*(1 - x^2 - x^3) / ((1-x^3)*(1 - x - x^2 +x*O(x^n))),n)} \\ Paul D. Hanna, Jul 18 2013
    
  • PARI
    a(n)=(fibonacci(n)+1)\2 \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = ceiling(Fibonacci(n)/2). - Mircea Merca, Jan 04 2010
a(n) = a(n-1) +a(n-2) +a(n-3) -a(n-4) -a(n-5) - Joerg Arndt, Apr 24 2011
G.f.: x/(1 - x*(1-x^4)/(1 - x^2*(1-x^5)/(1 - x^3*(1-x^6)/(1 - x^4*(1-x^7)/(1 - x^5*(1-x^8)/(1 - x^6*(1-x^9)/(1 - x^7*(1-x^10)/(1 - x^8*(1-x^11)/(1 - ...))))))))), (continued fraction) - Paul D. Hanna, Jul 08 2013
G.f.: x*(1 - x^2 - x^3) / ((1-x^3)*(1 - x - x^2)). [Paul D. Hanna, Jul 18 2013, from Joerg Arndt's formula]
a(n) = A061347(n)/6 +1/3 +A000045(n)/2. - R. J. Mathar, Jul 19 2013
For n > 1, if n == 0 (mod 3) then a(n) = a(n-1) + a(n-2) - 1; otherwise a(n) = a(n-1) + a(n-2). - Franklin T. Adams-Watters, Jun 11 2018

Extensions

Name simplified using Mircea Merca's formula by Eric W. Weisstein, Sep 06 2017

A143064 Expansion of a Ramanujan false theta series variation of A089801 in powers of x.

Original entry on oeis.org

1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 21 2008

Keywords

Examples

			G.f. = 1 + x - x^5 - x^8 + x^16 + x^21 - x^33 - x^40 + x^56 + x^65 - x^85 - x^96 + ...
G.f. = q + q^4 - q^16 - q^25 + q^49 + q^64 - q^100 - q^121 + q^169 + q^196 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 13th equation.

Crossrefs

Column m=0 of A185646.

Programs

  • Mathematica
    a[ n_] := With[ {m = Sqrt[3 n + 1]}, If[ IntegerQ @ m, (-1)^Quotient[ m, 3], 0]]; (* Michael Somos, Jun 30 2015 *)
    a[ n_] := SeriesCoefficient[ Sum[ (-1)^k x^(3 k^2 + 2 k) (1 + x^(2 k + 1)), {k, 0, n}], {x, 0, n}]; (* Michael Somos, Nov 04 2013 *)
    a[ n_] := SeriesCoefficient[ Sum[ x^k QPochhammer[ x, x^2, k], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
    a[ n_] := SeriesCoefficient[ Sum[ x^k / QPochhammer[ -x, x^2, k + 1], {k, 0, 2 n}], {x, 0, 2 n}]; (* Michael Somos, Jun 30 2015 *)
  • PARI
    {a(n) = my(m); if( issquare( 3*n + 1, &m), (-1)^(m \ 3) )};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( e%2, 0, p==2, -(-1)^(e/2), p == 3, 0, p%6 == 1, 1, (-1)^(e/2))))}; /* Michael Somos, Jul 19 2013 */
    
  • PARI
    /* Continued Fraction: */
    {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 18 2013

Formula

Expansion of Sum_{k>=0} x^k / (Product_{j=0..k} ( 1 + x^(2*k + 1) ) ) in powers of x^2. - Michael Somos, Nov 04 2013
a(n) = b(3*n + 1) where b() is multiplicative with b(p^(2*e)) = -(-1)^e if p = 2, b(p^(2*e)) = (-1)^e if p = 5 (mod 6), b(p^(2*e)) = 1 if p = 1 (mod 6), and b(p^(2*e-1)) = b(3^e) = 0 if e>0. - Michael Somos, Jul 19 2013
a(4*n + 2) = a(4*n + 3) = a(8*n + 4) = 0.
a(8*n) = A143062(n). Convolution of A010054 with A143065. - Michael Somos, Jul 19 2013
G.f.: Sum_{k>=0} (-1)^k * x^(3*k^2 + 2*k) * ( 1 + x^(2*k + 1) ).
G.f.: 1/(1 - x*(1-x)/(1 - x^2*(1-x^2)/(1 - x^3*(1-x^3)/(1 - x^4*(1-x^4)/(1 - ...))))), a continued fraction. - Paul D. Hanna, Jul 18 2013
abs(a(n)) = A089801(n). - Michael Somos, Jun 30 2015
G.f.: 1 + x*(1-x) + x^2*(1-x)*(1-x^3) + x^3*(1-x)*(1-x^3)*(1-x^5) + ... . - Michael Somos, Aug 03 2017

A227375 G.f.: 1/(1 - x*(1-x^6)/(1 - x^2*(1-x^7)/(1 - x^3*(1-x^8)/(1 - x^4*(1-x^9)/(1 - x^5*(1-x^10)/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 14, 24, 41, 69, 118, 200, 340, 579, 985, 1677, 2854, 4858, 8270, 14078, 23966, 40798, 69453, 118235, 201280, 342655, 583328, 993046, 1690543, 2877949, 4899369, 8340598, 14198887, 24171937, 41149884, 70052848, 119256753, 203020631, 345618810, 588375486, 1001640259
Offset: 0

Views

Author

Paul D. Hanna, Jul 09 2013

Keywords

Comments

Radius of convergence r is a root of 1 - r - r^2 - r^3 + r^5 + r^6 + r^7 = 0,
where r = Limit a(n)/a(n+1) = 0.587411973105598587998520092901249815195963...
Compare to sequence A227376, generated by 1/(1-x-x^2-x^3+x^5+x^6+x^7).

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 9*x^6 + 14*x^7 + 24*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    nMax = 42; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A227375 = col[5][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
    LinearRecurrence[{1,1,1,0,0,-2,-2,-1,0,1,1,1},{1,1,1,2,3,5,9,14,24,41,69,118},50] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+6))*CF+x*O(x^n))); polcoeff(CF, n)
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    /* From R. J. Mathar's g.f. formula: */
    {a(n)=polcoeff((1-x-x^4)*(1+x-x^3-x^4-x^5)/((1-x^5)*(1-x-x^2-x^3+x^5+x^6+x^7) +x*O(x^n)),n)}
    for(n=0,50,print1(a(n),", ")) \\ Paul D. Hanna, Jul 18 2013

Formula

Conjecture: G.f. -(x^4+x-1)*(x^5+x^4+x^3-x-1) / ( (x-1)*(x^4+x^3+x^2+x+1)*(x^7+x^6+x^5-x^3-x^2-x+1) ). - R. J. Mathar, Jul 17 2013

A227360 G.f.: 1/(1 - x*(1-x^3)/(1 - x^2*(1-x^4)/(1 - x^3*(1-x^5)/(1 - x^4*(1-x^6)/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 10, 14, 21, 32, 46, 71, 104, 157, 235, 350, 527, 785, 1179, 1763, 2639, 3954, 5915, 8861, 13262, 19857, 29731, 44507, 66640, 99765, 149366, 223625, 334795, 501247, 750434, 1123518, 1682076, 2518314, 3770306, 5644701, 8450977, 12652376
Offset: 0

Views

Author

Paul D. Hanna, Jul 08 2013

Keywords

Comments

Compare to the continued fraction representation for the g.f. of A173173, where A173173(n) = ceiling(Fibonacci(n)/2).
Limit a(n)/a(n+1) = 0.6679357039724580760720733281356826861233293827578332775311...

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 10*x^8 +...
		

Crossrefs

Column m=2 of A185646.

Programs

  • Mathematica
    nMax = 44; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x] &; A227360 = col[2][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
  • PARI
    {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+3))*CF+x*O(x^n))); polcoeff(CF, n)}
    for(n=0,50,print1(a(n),", "))

A227374 G.f.: 1/(1 - x*(1-x^5)/(1 - x^2*(1-x^6)/(1 - x^3*(1-x^7)/(1 - x^4*(1-x^8)/(1 - x^5*(1-x^9)/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 22, 36, 61, 101, 169, 283, 473, 793, 1325, 2220, 3715, 6220, 10413, 17431, 29185, 48856, 81797, 136937, 229257, 383813, 642564, 1075762, 1800995, 3015171, 5047886, 8451001, 14148368, 23686705, 39655467, 66389797, 111147511, 186079299, 311527531, 521548600
Offset: 0

Views

Author

Paul D. Hanna, Jul 09 2013

Keywords

Comments

Limit a(n)/a(n+1) = 0.597312551712707899432116871133154503665320273329853...

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + 13*x^7 + 22*x^8 +...
		

Crossrefs

Column m=4 of A185646.

Programs

  • Mathematica
    nMax = 42; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A227374 = col[4][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)
  • PARI
    {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 - x^(n-k+1)*(1 - x^(n-k+5))*CF+x*O(x^n))); polcoeff(CF, n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: T(0), where T(k) = 1 - x^(k+1)*(1-x^(k+5))/(x^(k+1)*(1-x^(k+5)) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 18 2013

A228644 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=7.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 44, 76, 131, 225, 389, 670, 1156, 1994, 3439, 5934, 10236, 17661, 30470, 52569, 90699, 156483, 269985, 465811, 803677, 1386609, 2392357, 4127611, 7121498, 12286951, 21199078, 36575462, 63104849, 108876873, 187848862, 324101847
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2013

Keywords

Crossrefs

Cf. A143064 (m=0), A227360 (m=2), A173173 (m=3), A227374 (m=4), A227375 (m=5), A228646(m=6), A228645 (m=9).
Column m=7 of A185646.

Programs

  • Maple
    a:= n-> coeff(series(-(x^18 +x^17 +x^16 +2*x^15 +x^14 -2*x^11 -2*x^10 -2*x^9 -2*x^8 +x^5 +x^4 +x^3 +x^2-1) / ((x-1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^15 +x^14 +x^13 +2*x^12 -x^9 -2*x^8 -2*x^7 -x^6 +x^3 +x^2 +x-1)), x, n+1), x, n): seq(a(n), n=0..50);
  • Mathematica
    nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A228644 = col[7][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)

Formula

G.f.: -(x^18 +x^17 +x^16 +2*x^15 +x^14 -2*x^11 -2*x^10 -2*x^9 -2*x^8 +x^5 +x^4 +x^3 +x^2-1) / ((x-1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)*(x^15 +x^14 +x^13 +2*x^12 -x^9 -2*x^8 -2*x^7 -x^6 +x^3 +x^2 +x-1)).

A228645 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=9.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 134, 232, 402, 695, 1205, 2086, 3613, 6259, 10841, 18780, 32531, 56354, 97621, 169111, 292954, 507488, 879136, 1522947, 2638242, 4570298, 7917253, 13715281, 23759370, 41159039, 71300984, 123516755, 213971647, 370669282
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2013

Keywords

Crossrefs

Cf. A143064 (m=0), A227360 (m=2), A173173 (m=3), A227374 (m=4), A227375 (m=5), A228646 (m=6), A228644 (m=7).
Column m=9 of A185646.

Programs

  • Maple
    a:= n-> coeff(series(-(x^30 +x^29 +x^28 +2*x^27 +2*x^26 +2*x^25 +x^24 +x^23 -x^22 -2*x^21 -2*x^20 -4*x^19 -4*x^18 -3*x^17 -2*x^16 -x^15 +2*x^13 +2*x^12 +3*x^11 +3*x^10 +x^9 +x^8 -x^5 -x^4 -x^3 -x^2+1) / ((x-1)*(x^2 +x+1)*(x^6 +x^3+1)*(x^26 +x^25 +x^24 +2*x^23 +2*x^22 +x^21 +x^20 -2*x^18 -2*x^17 -3*x^16 -3*x^15 -3*x^14 -x^13 -x^12 +x^11 +2*x^10 +2*x^9 +2*x^8 +x^7 +x^6 -x^3 -x^2 -x+1)), x, n+1), x, n): seq(a(n), n=0..50);
  • Mathematica
    nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x] &; A228645 = col[9][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)

Formula

G.f.: -(x^30 +x^29 +x^28 +2*x^27 +2*x^26 +2*x^25 +x^24 +x^23 -x^22 -2*x^21 -2*x^20 -4*x^19 -4*x^18 -3*x^17 -2*x^16 -x^15 +2*x^13 +2*x^12 +3*x^11 +3*x^10 +x^9 +x^8 -x^5 -x^4 -x^3 -x^2+1) / ((x-1)*(x^2 +x+1)*(x^6 +x^3+1)*(x^26 +x^25 +x^24 +2*x^23 +2*x^22 +x^21 +x^20 -2*x^18 -2*x^17 -3*x^16 -3*x^15 -3*x^14 -x^13 -x^12 +x^11 +2*x^10 +2*x^9 +2*x^8 +x^7 +x^6 -x^3 -x^2 -x+1)).

A228646 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=6.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 25, 43, 74, 126, 217, 372, 638, 1096, 1881, 3230, 5546, 9524, 16353, 28083, 48224, 82811, 142208, 244204, 419360, 720144, 1236670, 2123670, 3646879, 6262611, 10754485, 18468174, 31714525, 54461873, 93524824, 160605817, 275800867
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2013

Keywords

Crossrefs

Cf. A143064 (m=0), A227360 (m=2), A173173 (m=3), A227374 (m=4), A227375 (m=5), A228644 (m=7), A228645 (m=9).
Column m=6 of A185646.

Programs

  • Mathematica
    nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A228646 = col[6][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)

A185648 Expansion of g.f. 1/ (1-x^1*(1-x^(m+1))/ (1-x^2*(1-x^(m+2))/ (1- ... ))) for m=8.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 77, 133, 230, 397, 687, 1188, 2054, 3553, 6145, 10629, 18385, 31802, 55010, 95156, 164600, 284725, 492519, 851962, 1473732, 2549275, 4409764, 7628058, 13195104, 22825046, 39483039, 68298240, 118143130, 204365438, 353513851
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2013

Keywords

Crossrefs

Column m=8 of A185646.

Programs

  • Mathematica
    nMax = 39; col[m_ /; 0 <= m <= nMax] := 1/(1 + ContinuedFractionK[-x^k (1 - x^(m + k)), 1, {k, 1, Ceiling[nMax/2]}]) + O[x]^(2 nMax) // CoefficientList[#, x]&; A185648 = col[8][[1 ;; nMax]] (* Jean-François Alcover, Nov 03 2016 *)

Formula

a(n) ~ c * d^n, where d = 1.729812413755051803149808764090629506945619020643782294236248965..., c = 0.319480257502538464183377228844611044469159258446802374119607096... . - Vaclav Kotesovec, Sep 04 2014
Showing 1-10 of 11 results. Next