cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A256099 Decimal expansion of the real root of a cubic used by Omar Khayyám in a geometrical problem.

Original entry on oeis.org

1, 5, 4, 3, 6, 8, 9, 0, 1, 2, 6, 9, 2, 0, 7, 6, 3, 6, 1, 5, 7, 0, 8, 5, 5, 9, 7, 1, 8, 0, 1, 7, 4, 7, 9, 8, 6, 5, 2, 5, 2, 0, 3, 2, 9, 7, 6, 5, 0, 9, 8, 3, 9, 3, 5, 2, 4, 0, 8, 0, 4, 0, 3, 7, 8, 3, 1, 1, 6, 8, 6, 7, 3, 9, 2, 7, 9, 7, 3, 8, 6, 6, 4, 8, 5, 1, 5, 7, 9, 1, 4, 5, 7, 6, 0, 5, 9, 1
Offset: 1

Views

Author

Wolfdieter Lang, Apr 08 2015

Keywords

Comments

This geometrical problem is considered in the Alten et al. reference on pp. 190-192.
The geometrical problem is to find in the first quadrant the point P on a circle (radius R) such that the ratio of the normal to the y-axis through P and the radius equals the ratio of the segments of the radius on the y-axis. See the link with a figure and more details. For Omar Khayyám see the references as well as the Wikipedia and MacTutor Archive links.
The ratio of the length of the normal x and the segment h on the y-axis starting at the origin is called xtilde, and satisfies the cubic equation
xtilde^3 -2*xtilde^2 + 2*xtilde - 2 = 0. This xtilde is the tangent of the angle alpha between the positive y-axis and the radius vector from the origin to the point P. This cubic equation has only one real solution xtilde = tan(alpha) given in the formula section. The present decimal expansion belongs to xtilde.
Apart from the first digit the same as A192918. - R. J. Mathar, Apr 14 2015

Examples

			1.5436890126920763615708559...
		

References

  • H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, pp. 190-192.
  • O. Khayyam, A paper of Omar Khayyam, Scripta Math. 26 (1963), 323-337.

Crossrefs

Cf. A058265. Essentially the same as A192918.

Programs

  • Mathematica
    RealDigits[Root[x^3 - 2 x^2 + 2 x - 2, 1], 10, 105][[1]] (* Jean-François Alcover, Oct 24 2019 *)
  • PARI
    solve(x=1, 2, x^3-2*x^2+2*x-2) \\ Michel Marcus, Oct 24 2019

Formula

xtilde = tan(alpha) = ((3*sqrt(33) + 17)^(1/3) - (3*sqrt(33) - 17)^(1/3) + 2)/3 = 1.54368901269...
The corresponding angle alpha is approximately 57.065 degrees.
The real root of x^3-2*x^2+2*x-2. Equals tau^2-tau where tau is the tribonacci constant A058265. - N. J. A. Sloane, Jun 19 2019

A319200 a(n) = -(A(n) - A(n-1)) where A(n) = A057597(n+1), for n >= 0.

Original entry on oeis.org

0, -1, 2, -1, -2, 5, -4, -3, 12, -13, -2, 27, -38, 9, 56, -103, 56, 103, -262, 215, 150, -627, 692, 85, -1404, 2011, -522, -2893, 5426, -3055, -5264, 13745, -11536, -7473, 32754, -36817, -3410, 72981, -106388, 29997, 149372, -285757, 166382, 268747, -720886, 618521, 371112, -1710519, 1957928, 123703, -3792150
Offset: 0

Views

Author

Wolfdieter Lang, Oct 23 2018

Keywords

Comments

This sequence appears in the reduction formula for negative powers of the tribonacci constant t = A058265: t^(-n) = A(n)*t^2 + a(n)*t + A(n+1)*1, with A(n) = A057597(n+1), for n >= 0. This follows from t^3 = t^2 + t + 1, or 1/t = t^2 - t - 1 = A192918, leading to the recurrence: A(n) = -A(n) - A(n-1) + A(n-2), with inputs A(-3) = 1, A(-2) = 1 and A(-1) = 0 and a(n) = -(A(n) - A(n-1)). See the example below.

Examples

			The coefficients of t^2, t, 1 for t^(-n) begin, for n >= -3:
n     t^2  t   1
-----------------
-3     1   1   1
-2     1   0   0
-1     0   1   0
----------------
+0     0   0   1
+1     1  -1  -1
+2    -1   2   0
+3     0  -1   2
+4     2  -2  -3
+5    -3   5   1
+6     1  -4   4
+7     4  -3  -8
+8    -8  12   5
+9     5 -13   7
10     7  -2 -20
...
		

Crossrefs

Cf. A057597, A058265, A078016(n+1) (different signs), A192918.

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,1},{0,-1,2},60] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    a057597(n) = polcoeff( if( n<0, x / ( 1 - x - x^2 - x^3), x^2 / ( 1 + x + x^2 - x^3) ) + x*O(x^abs(n)), abs(n)) \\ after Michael Somos in A057597
    a(n) = -(a057597(n+1)-a057597(n)) \\ Felix Fröhlich, Oct 23 2018

Formula

a(n) = -(A057597(n+1) - A057597(n)), for n >= 0.
Recurrence a(n) = -a(n-1) - a(n-2) + a(n-3), for n >=0, with a(-3) = 1, a(-2) = 0 and a(-1) = 1.
G.f.: (1 + 1/x)/(1 + x + x^2 - x^3).

A321196 Riordan triangle T = (1/(1 + x^2 - x^3), x/(1 + x^2 - x^3)).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 1, -2, 0, 1, 1, 2, -3, 0, 1, -2, 3, 3, -4, 0, 1, 0, -6, 6, 4, -5, 0, 1, 3, -1, -12, 10, 5, -6, 0, 1, -2, 12, -4, -20, 15, 6, -7, 0, 1, -3, -7, 30, -10, -30, 21, 7, -8, 0, 1, 5, -16, -15, 60, -20, -42, 28, 8, -9, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Nov 09 2018

Keywords

Comments

This is the (ordinary) convolution triangle based on A077961 (the column k = 0 of T).
The row polynomials R(n, x) := Sum_{k=0..n} T(n, k)*x^k, with R(-1, x) = 0, appear in the Cayley-Hamilton formula for nonnegative powers of a 3 X 3 matrix with Det M = sigma(3; 3) = x1*x2*x3 = +1, sigma(3; 2) := x1*x2 + x1*x*3 + x2*x^3 = +1 and Tr M = sigma(3; 1) = x1 + x2 = x, where x1, x2, and x3 are the eigenvalues of M, and sigma the elementary symmetric functions, as M^n = R(n-2, x)*M^2 + (-R(n-3, x) + R(n-4, x))*M + R(n-3, x)*1_3, for n >= 3, where M^0 = 1_3 is the 3 X 3 unit matrix.
For the Cayley-Hamilton formula for 3 X 3 matrices with Det M = +1, sigma(3,2) = -1 and Tr(M) = x see A104578.
The row sums give A133872 (repeat(1, 1, 0, 0)). The alternating row sums give A057597(n+2), for n >= 0.
The Riordan triangle (1/(1 + x^2 + x^3), x/(1 + x^2 + x^3)) has entries t(n, m) = (-1)^(n-m)*T(n, m) (from the g.f. G(-x, -z), where the g.f. G of T is given below).
The inverse of Riordan T is T^{-1}, given in A321198.

Examples

			The triangle T(n, k) begins:
n\k  0   1   2   3   4   5  6  7  8  9 10 ...
---------------------------------------------
0:   1
1:   0   1
2:  -1   0   1
3:   1  -2   0   1
4:   1   2  -3   0   1
5:  -2   3   3  -4   0   1
6:   0  -6   6   4  -5   0  1
7:   3  -1 -12  10   5  -6  0  1
8:  -2  12  -4 -20  15   6 -7  0  1
9:  -3  -7  30 -10 -30  21  7 -8  0  1
10:  5 -16 -15  60 -20 -42 28  8 -9  0  1
...
Cayley-Hamilton formula for the matrix TS(x) =[[x,-1,1], [1,0,0], [0,1,0]] with Det(TS(x)) = +1, sigma(3, 2) = +1, and Tr(TS(x)) = x. For n = 3: TS(x)^3 = R(1, x)*TS(x)^2 + (-R(0, x) + R(-1, x))*TS(x) + R(0, x)*1_3 = x*TS(x)^2 - TS(x) + 1_3. Compare this for x = -1 with r^3 = R(3)*r^2 + (-R(2) + R(1))*r + R(2)*1 = r^2 - r + 1, where r = 1/t = A192918, with the tribonacci constant t = A058265, and R(n) = A057597(n) = R(n-2, -1).
Recurrence: T(5, 2) = T(4, 1) - T(3, 2) + T(2, 2) = 1 -(-1) + 1 = 3.
Boas-Buck type recurrence with B = {0, -2, 3, ...}:
  T(5, 2) = ((2+1)/(5-2))*(3*1 + (-2)*0 + 0*(-3)) = 1*3 = 3.
Z- and A-recurrence with A(n) = {1, 0, -1, 1, -1, ...} and Z(n) = A(n+1):
  T(4, 0) = 0*T(3, 0) - 1*T(3, 1) + 1*T(3, 2) - 1*T(3, 3) = 0 + 2 + 0 - 1 = 1.
  T(5, 2) = 1*T(4, 1) + 0*T(4, 2) - 1*T(4, 3) + 1*T(4, 4) = 2 + 0 + 0 + 1 = 3.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] - T[n - 2, k] + T[n - 3, k]; T[0, 0] = 1; T[, ] = 0;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jul 06 2019 *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1/(1 + x^2 - x^3), x/(1 + x^2 - x^3), 11) # Peter Luschny, Nov 13 2018

Formula

T(n, k) = T(n-1, k-1) - T(n-2, k) + T(n-3, k), T(0, 0) = 1, T(n,k) = 0 if n < k or if k < 0. (Cf. A104578.)
The Riordan property T = (G(x), x*G(x)) with G(x) = 1/(1 + x^2 - x^3) implies the following.
G.f. of row polynomials R(n, x) is G(x, z) = 1/(1 - x*z + z^2 - z^3).
G.f. of column sequence k: x^k/(1 + x^2 - x^3)^(k+1), k >= 0.
Boas-Buck recurrence (see the Aug 10 2017 remark in A046521, also for two references):
T(n, k) = ((k+1)/(n-k))*Sum_{j=k..n-1} B(n-1-j)*T(j, k), for n >= 1, k = 0,1, ..., n-1, and input T(n, n) = 1, for n >= 0. Here B(n) = [x^n]*(d/dx)log(G(x)) = x*(-2 + 3*x)/(1 + x^2 - x^3) = (-1)^n*A112455(n+1), for n >= 0.
Recurrences from the A- and Z- sequences (see the W. Lang link under A006232 with references), which are A(n) = A321197(n) and Z(n) = A(n+1).
T(0, 0) = 1, T(n, k) = 0 for n < k, and
T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1, and
T(n, k) = Sum_{j=0..n-k} A(j)*T(n-1, k-1+j), for n >= m >= 1.

A376841 Decimal expansion of a constant related to the asymptotics of A066447 and A333374.

Original entry on oeis.org

7, 1, 5, 7, 8, 7, 4, 1, 7, 8, 6, 1, 4, 3, 5, 2, 4, 8, 8, 0, 2, 0, 5, 0, 1, 6, 4, 9, 9, 8, 9, 1, 0, 1, 6, 0, 6, 4, 8, 2, 6, 7, 9, 7, 5, 9, 3, 5, 4, 9, 3, 7, 3, 6, 1, 9, 5, 7, 5, 8, 6, 2, 7, 2, 5, 2, 3, 3, 7, 2, 3, 7, 1, 3, 7, 9, 3, 2, 6, 7, 7, 9, 3, 1, 5, 5, 3, 5, 7, 1, 4, 2, 1, 6, 4, 3, 3, 3, 7, 8, 6, 9, 0, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Examples

			7.1578741786143524880205016499891016064826797593549373619575862725233...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(2*Sqrt[Log[r]^2 + PolyLog[2, r^2] - PolyLog[2, -r^2]]) /. r -> (-1 - 2/(17 + 3*Sqrt[33])^(1/3) + (17 + 3*Sqrt[33])^(1/3))/3, 10, 105][[1]]

Formula

Equals limit_{n->infinity} A066447(n)^(1/sqrt(n)).
Equals limit_{n->infinity} A333374(n)^(1/sqrt(n)).
Equals exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r.

A376853 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} ((1 + x^j)/(1 - x^j))^2.

Original entry on oeis.org

1, 1, 4, 9, 16, 28, 49, 84, 140, 228, 361, 560, 856, 1288, 1916, 2821, 4108, 5928, 8480, 12024, 16920, 23637, 32788, 45196, 61928, 84368, 114332, 154160, 206857, 276308, 367476, 486680, 641996, 843656, 1104592, 1441168, 1873965, 2428816, 3138132, 4042408, 5192132
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[(1+x^j)/(1-x^j), {j, 1, k}]^2, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(sqrt(8*n*(log(r)^2 + polylog(2,r) - polylog(2,-r)))), where r = A192918 = 0.54368901269207636157... is the real root of the equation r*(1+r^2) = (1-r^2) and c = 0.0643033662740307713580663125340126524175...

A273905 Number of symmetric bargraphs having semiperimeter n (n>=2).

Original entry on oeis.org

1, 2, 3, 5, 9, 15, 27, 46, 83, 143, 259, 450, 817, 1429, 2599, 4570, 8323, 14698, 26797, 47491, 86659, 154042, 281287, 501283, 915907, 1635835, 2990383, 5351138, 9786369, 17541671, 32092959, 57610988, 105435607, 189521640, 346950321, 624389105
Offset: 2

Views

Author

Emeric Deutsch and Sergi Elizalde, Jun 23 2016

Keywords

Examples

			a(4) = 3; indeed, the corresponding compositions are [3],[2,2],[1,1,1].
a(6) = 9; indeed, the corresponding compositions are [5],[4,4],[1,3,1],[2,3,2],[2,1,2],[3,3,3],[2,2,2,2],[1,2,2,1],[1,1,1,1,1].
		

Programs

  • Maple
    Q := sqrt((1-z^2)*(1-z-z^2-z^3)*(1+z-z^2+z^3)): g := (1/2)*(1+z)*(z^4+2*z^3+2*z^2-1+Q)/(z*(1-z-z^2-z^3)): gser := series(g, z = 0, 42): seq(coeff(gser,z,n), n=2..37);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<9, [$0..3, 5, 9, 15, 27]
          [n], (2*a(n-1) +(4*n-6)*a(n-2) -(2*n-12)*a(n-4)
          -6*a(n-5) +2*a(n-6) -(n-9)*a(n-8))/ (n+1))
        end:
    seq(a(n), n=2..40);  # Alois P. Heinz, Jun 24 2016
  • Mathematica
    a[2]=1; a[3]=2; a[4]=3; a[5]=5; a[6]=9; a[7]=15; a[8]=27; a[n_ /; n>8] := a[n] = ((9-n)*a[n-8] + 2*a[n-6] - 6*a[n-5] + (12-2*n)*a[n-4] + (4*n-6)*a[n-2] + 2*a[n-1])/(n+1); Table[a[n], {n, 2, 40}] (* Jean-François Alcover, Dec 02 2016, after Alois P. Heinz *)

Formula

G.f.: g(z)=(1+z)(z^4+2z^3+2z^2-1+Q)/(2z(1-z-z^2-z^3)), where Q = sqrt((1-z^2)(1-z-z^2-z^3)(1+z-z^2+z^3)).
Conjecture D-finite with recurrence (n+1)*a(n) +2*(-1)*a(n-1) +2*(-2*n+3)*a(n-2) +2*(n-6)*a(n-4) +6*(1)*a(n-5) -2*a(n-6) +(n-9)*a(n-8)=0. - R. J. Mathar, Jul 22 2022
a(n) ~ sqrt(2*r*(2-3*r)) * (25 + 18*r + 13*r^2) * (1 + r + r^2)^n / (22*sqrt(Pi*n)), where r = A192918. - Vaclav Kotesovec, Mar 08 2023

A309172 Expansion of Product_{k>=1} 1/(1 - (1 + x + x^2) * x^k).

Original entry on oeis.org

1, 1, 3, 7, 15, 31, 64, 128, 254, 496, 961, 1844, 3516, 6662, 12564, 23593, 44153, 82385, 153351, 284857, 528235, 978148, 1809120, 3342722, 6171318, 11385733, 20994298, 38693809, 71288111, 131297855, 241761727, 445068646, 819205061, 1507641487, 2774307387, 5104712633
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - (1 + x + x^2) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[x^k Sum[(1 + x + x^2)^d/d, {d, Divisors[k]}], {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (1 + x + x^2)^d/d).
a(n) ~ 1/((1 + 2*r + 3*r^2) * QPochhammer[r] * r^(n+1)), where r = A192918. - Vaclav Kotesovec, Jul 16 2019

A320286 Expansion of Product_{k>=1} 1/(1 - x^k - x^(2*k) - x^(3*k)).

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 51, 93, 184, 343, 654, 1211, 2286, 4217, 7865, 14521, 26912, 49600, 91669, 168800, 311305, 573058, 1055576, 1942437, 3575840, 6578762, 12106121, 22270404, 40972700, 75367724, 138644224, 255020102, 469095029, 862827347, 1587061299, 2919111935, 5369224903
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 09 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/( &*[(1-x^k-x^(2*k)-x^(3*k)): k in [1..m+2]]))); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series(mul(((1-x^k-x^(2*k)-x^(3*k)))^(-1),k=1..n),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    nmax = 36; CoefficientList[Series[Product[1/(1 - x^k - x^(2 k) - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 36; CoefficientList[Series[Exp[-Sum[Sum[EulerPhi[j] Log[1 - x^(j k) (1 + x^(j k) + x^(2 j k))]/(j k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    m=40; x='x+O('x^m); Vec(1/prod(k=1, m+2, (1-x^k-x^(2*k)-x^(3*k)))) \\ G. C. Greubel, Oct 24 2018
    

Formula

G.f.: exp(-Sum_{k>=1} Sum_{j>=1} phi(j)*log(1 - x^(j*k)*(1 + x^(j*k) + x^(2*j*k)))/(j*k)), where phi = Euler totient function (A000010).
From Vaclav Kotesovec, Oct 09 2018: (Start)
a(n) ~ s*p / r^(n+1), where
r = A192918 = ((17 + 3*sqrt(33))^(1/3) - 2/(17 + 3*sqrt(33))^(1/3) - 1)/3 = 0.54368901269207636157085597180174798652520329765098393524... is the real root of the equation 1 - r - r^2 - r^3 = 0,
s = (51 + 9*sqrt(33))/(4*(17 + 3*sqrt(33))^(1/3) + (17 + 3*sqrt(33))^(5/3) - 34 - 6*sqrt(33)) = 0.3362281169949410942253629540143324151579260900204592... is the real root of the equation -1 - 2*s + 44*s^3 = 0,
p = Product_{k>=2} 1/(1 - r^k - r^(2*k) - r^(3*k)) = 2.577933056783997593784130068093034525002002622982961271582417329674...
(End)

A347290 Arnoux-Rauzy word sigma_0 x sigma_2 x sigma_1. Fixed point of the morphism 0-> 0201020, 1->1020, 2->201020 starting from a(1)=0.

Original entry on oeis.org

0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0
Offset: 1

Views

Author

Jiri Hladky, Aug 29 2021

Keywords

Comments

Arnoux-Rauzy word sigma_0 x sigma_2 x sigma_1, where sigmas are defined as:
sigma_0 : 0 -> 0, 1 -> 10, 2 -> 20;
sigma_1 : 0 -> 01, 1 -> 1, 2 -> 21;
sigma_2 : 0 -> 02, 1 -> 12, 2 -> 2.
Fixed point of the morphism 0->0201020, 1->1020, 2->201020 starting from a(1)=0.
Frequency of letters:
0: 1/t ~ 54.368% (A192918)
1: 1/t^3 ~ 16.071%
2: 1/t^2 ~ 29.559%
where t is tribonacci constant A058265.
Equals A286998 with a re-mapping of values 1->2, 2->1.

Crossrefs

Cf. A080843 A286998 (values 0,2,1), A058265.

Programs

  • Mathematica
    Nest[ Flatten[# /. {0 -> {0, 2, 0, 1, 0, 2, 0}, 1 -> {1, 0, 2, 0}, 2 -> {2, 0, 1, 0, 2, 0}}] &, {0}, 3]

A376152 Decimal expansion of a constant related to the asymptotics of A376530.

Original entry on oeis.org

4, 9, 8, 8, 0, 2, 0, 8, 7, 6, 6, 0, 0, 9, 0, 3, 8, 0, 5, 3, 3, 5, 2, 2, 4, 4, 6, 0, 7, 9, 0, 7, 7, 3, 0, 5, 0, 8, 3, 2, 0, 3, 8, 1, 5, 6, 0, 9, 1, 6, 8, 7, 9, 6, 2, 3, 8, 7, 4, 4, 4, 9, 9, 1, 9, 1, 9, 5, 5, 2, 9, 6, 5, 3, 4, 2, 1, 0, 1, 1, 8, 3, 9, 2, 4, 3, 7, 9, 6, 0, 7, 2, 5, 7, 7, 9, 8, 0, 7, 3, 9, 0, 8, 5, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 09 2024

Keywords

Examples

			4.988020876600903805335224460790773050832038156091687962387444991919...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(2*Sqrt[Log[r]^2 + 2*PolyLog[2, 1-r] - 2*PolyLog[2, 1-r^3]/3]) /. r -> (-1 - 2/(17 + 3*Sqrt[33])^(1/3) + (17 + 3*Sqrt[33])^(1/3))/3, 10, 120][[1]]

Formula

Equals limit_{n->infinity} A376530(n)^(1/sqrt(n)).
Equals exp(2*sqrt(log(r)^2 + 2*polylog(2, 1-r) - 2*polylog(2, 1-r^3)/3)), where r = A192918 = 0.54368901269207636157085597180174... is the real root of the equation r^2 * (1-r^3)^2 = (1-r)^2.
Previous Showing 11-20 of 22 results. Next